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Robots in a human environment need to be compliant.
This compliance requires that a pre-planed movement can
be adapted to an obstacle that may move or appear sud-
denly. Here, we present a general framework for online
adaptation to obstacles. Using the dynamic-movement-
primitive formulation, we represent a pre-trained move-
ment in end-effector space with a differential equation.
This equation allows adding a perturbing force without
sacrificing stability. As perturbation, we use a repel-
lent force around a point-like obstacle. We demonstrate
our framework in simulations and with the Sarcos Master
robot arm

Humans can adapt a movement plan online to ad-
just for obstacles in the intended path. This flexibility
is also required in robots operating in a human environ-
ment, where humans may move unpredictably forbidding
a robot to strictly follow a pre-planned path. At the same
time, we like to program a robotic movement in a simple
way, i.e., through demonstration.

We combine movement reproduction from demonstra-
tion with the flexibility to react to perturbances using the
dynamic movement primitive (DMP) framework [1]. A
DMP can represent any recorded movement with a set of
differential equations [2]. Representing a movement with
a differential equation has the advantage that a pertur-
bance can be automatically corrected for by the dynamics
of the system. Moreover, the DMPs are formulated in a
way that convergence to a goal position is guaranteed.

For online obstacle avoidance, potential fields are a
common approach. A potential field is defined around an
obstacle, and the gradient of this field results in a repellent
force on the robot. This approach has been particularly
popular for motion planning in mobile robotics [3], but has
been also used for robotic manipulators; e.g., Brock and
Khatib [4] used the potential-field method for real-time
re-planning.

In the following, we show the combination of DMP
with potential fields, present our potential-field equation,
and show results in simulation and in the Sarcos robot.

Dynamic movement primitives

Dynamic movement primitives can be used to generate
discrete and rhythmic movements [2, 1]. Here, we focus
on discrete movements. A movement is generated by in-
tegrating the following set of differential equations (which
we will refer to as ‘transformation system’):

τ v̇ = K(g − x)−Dv −K(g − x0)θ + Kf(θ) (1)
τ ẋ = v , (2)

where x and v are position and velocity of the system;
x0 and g are the start and goal position; τ is a temporal

scaling factor; K and D are constants; D is chosen such
that the system is critically damped, and f is a non-linear
function which can be adapted to allow the generation of
arbitrary complex movements [2]. Equation (1) is slightly
different from perviously published versions. It fixes a
problem when start and end points are equal. This equa-
tion is motivated from human behavioral data and force
fields observed on the frog’s leg after stimulating the spinal
cord [5].

The equation of motion does not depend explicitly on
time, but instead on a phase variable θ, which goes from
1 towards 0 during a movement and is obtained by the
equation

τ θ̇ = −αθ . (3)

where α is a pre-defined constant.
To learn a movement from demonstration, first, a

movement x(t) is recorded and its derivatives v(t) and
v̇(t) are computed for each time step t. Second, (3) is in-
tegrated and θ(t) evaluated. Using the resulting arrays,
f(θ(t)) is computed based on (1), and its parameters are
determined.

For combining a DMP with a potential field for obsta-
cle avoidance, we add to (1) a repulsive accleration, the
negative gradient of a potential U around an obstacle,

τ v̇ = K(g − x)−Dv −K(g − x0)θ + Kf(θ)− ∂U

∂x
. (4)

Using the transformation system, we generate movements
in operational space. Thus, the variable x describes the
end-effector position, and the obstacle’s position is en-
coded in the same space.

Potential field for obstacle avoidance

We designed the potential field to achieve a human-like ob-
stacle avoidance. In experiments, we found better results
with a velocity-dependent field. The field is computed rel-
ative to the position and velocity of the obstacle. Let xr

and vr be the relative position and velocity vectors of the
end-effector. Our potential U is defined as

U(xr,vr) =

{
λ(− cos γ)β ||vr||

||xr|| : π
2 ≤ γ ≤ 3π

2

0 : else

}
(5)

where λ is a constant for the strength of the entire field,
β another constant, and γ the angle between xr and vr.

Simulation

We tested the movement generation with potential fields
in a simulation of a moving point (Fig. 1 and 2). The
transformation system describes the movement in the xy-
plane. Complex trajectories could be adapted for obstacle



avoidance (Fig. 1), and furthermore, the system could also
react to a moving obstacle (Fig. 2).
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Fig. 1: Movement generation with potential field (solid curve).

The original movement is shown with a dashed line.
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Fig. 2: Movement generation with potential field and moving

obstacle. Different time steps of the movement are shown. The

obstacle moves from bottom left to top right of the workspace.

Robot experiment

We tested our framework on the Sarcos Master robot
arm. Since the workspace of the robot is very limited,
we extended the end-effector with a stick and a ball at-
tached to it (Fig. 3). The DMP describes the end-effector

movement, and we use inverse kinematics and dynamics
to compute the joint torques. Link collisions are avoided
with a null-space control that maximizes the distance
between obstacle and links. In the demonstration, first,
the Sarcos arm reproduced a given movement; second, we
added an obstacle into the path of the end-effector. Using
the potential field (5) around the obstacle, the robot could
smoothly avoid the obstacle (Fig. 3).

Conclusions

We combined the dynamic movement primitive framework
with potential fields for online obstacle avoidance. DMP
provided us with a framework to reproduce a movement
from demonstration while being flexible to react to per-
turbances.

References

[1] S. Schaal, “Dynamic movement primitives: A framework
for motor control in humans and humanoid robotics,” in
2nd International Symposium on Adaptive Motion of Ani-
mals and Machines (AMAM), 2003.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learn-
ing attractor landscapes for learning motor primitives.”
in Advances in Neural Information Processing Systems,
S. Becker, S. Thrun, and K. Obermayer, Eds., vol. 15. MIT
Press, Cambridge, MA, 2003, pp. 1523–1530.

[3] J. Borenstein and Y. Koren, “Real-time obstacle avoidance
for fast mobile robots,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 19, pp. 1179–1187, 1989.

[4] O. Brock and O. Khatib, “Real-time re-planning in high-
dimensional configuration spaces using sets of homotopic
paths,” in Proceedings of the International Conference on
Robotics and Automation, vol. 1. IEEE, 2000, pp. 550–555.

[5] H. Hoffmann and S. Schaal, “Human movement generation
based on convergent flow fields: a computational model
and a behavioral experiment,” in Advances in Computa-
tional Motor Control VI, R. Shadmehr and E. Todorov,
Eds., San Diego, CA, 2007.

Fig. 3: Obstacle avoidance with Sarcos Master Arm. The first row shows the reproduction of a demonstrated movement, and

the second row shows the result of obstacle avoidance with the potential field.


