
Movement reproduction and obstacle avoidance with dynamic
movement primitives and potential fields

Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal
Computer Science and Neuroscience, University of Southern California, Los Angeles, USA

daehyunp@usc.edu, heiko@clmc.usc.edu, pastorsa@usc.edu, sschaal@usc.edu

Abstract—Robots in a human environment need to be compli-
ant. This compliance requires that a preplanned movement can
be adapted to an obstacle that may be moving or appearing un-
expectedly. Here, we present a general framework for movement
generation and mid-flight adaptation to obstacles. For robust
motion generation, Ijspeert et al developed the framework of
dynamic movement primitives [1], [2], [3], [4], which represent
a demonstrated movement with a set of differential equations.
These equations allow adding a perturbing force without sacrific-
ing stability of the desired movement. We extend this framework
such that arbitrary movements in end-effector space can be
represented - which was not possible before. Furthermore, we
include obstacle avoidance by adding to the equations of motion
a repellent force - a gradient of a potential field centered around
the obstacle. In addition, this article compares different potential
fields and shows how to avoid obstacle-link collisions within this
framework. We demonstrate the abilities of our approach in
simulations and with an anthropomorphic robot arm.

I. INTRODUCTION

Humans can adapt a movement plan online to adjust for
obstacles in the intended path. This flexibility is also required
in robots operating in a human environment, where humans
may move unpredictably, thus, forbidding a robot to strictly
follow a preplanned path. At the same time, we like to
program a robotic movement in a simple way, i.e., through
demonstration.

Several researchers developed methods for learning from
demonstration [5], [6]. A human movement is recorded and
later reproduced by a robot. Challenges that arise for this
reproduction are the correspondence problem and robustness
against perturbations. The correspondence problem refers to
the possible mismatch of link lengths and joints between robot
and demonstrator [7]. Thus, the robot cannot directly copy the
joint angles of the demonstrator. To deal with this problem, we
record the human movement in task space, i.e., Cartesian space
of the end-effector, and translate the resulting end-effector
trajectory using inverse kinematics and dynamics models (see
operational-space control).

A problem that received only minor attention is how to re-
produce the movement in presence of an obstacle. We address
this problem by using the dynamic movement primitive (DMP)
framework, which has been successfully applied to humanoid
robotics [3], [4]. A DMP can represent any recorded movement
with a set of differential equations [1], [2]. Representing
a movement with a differential equation has the advantage
that a perturbation can be automatically corrected for by the
dynamics of the system. Moreover, the DMPs are formulated
in a way that convergence to a goal position is guaranteed.

For online obstacle avoidance, potential fields are a common
approach [8], [9], [10]. A potential field is defined around an
obstacle, and the gradient of this field results in a repellent
force on the robot. This approach has been particularly popular
for motion planning in mobile robotics [9], but has been also
used for robotic manipulators; e.g., Brock and Khatib [11]
used the potential-field method for real-time re-planning.

The dynamic movement primitive framework naturally al-
lows the extension to potential fields. The gradient of such a
field is simply added to the acceleration term of the differential
equation. Thus, we can combine the representative power of
DMPs with the instant computation of repellent forces.

So far, potential functions or force fields used for obstacle
avoidance have been static, i.e., they compute a function of
only the distance between robot and obstacle. Here, we show
that using a dynamic potential field that depends on the relative
velocity between end-effector and obstacle results in smoother
avoidance movements.

In addition, since we work in operational space, we look
at suitable strategies for computing the inverse kinematics
in obstacle avoidance. Here, collisions between obstacle and
manipulator links have to be avoided.

We illustrate our framework for movement reproduction
and obstacle avoidance in several simulation experiments
and demonstrate its feasibility and application to humanoid
robotics with an anthropomorphic robot arm.

In the remainder of this article, we first explain in section II
the DMP framework and show how it is modified for on-line
obstacle avoidance. Section III presents the potential fields
used in this article. Section IV looks at inverse-kinematics
strategies suitable for obstacle avoidance with a redundant
manipulator. Section V illustrates the combination of DMP
and potential fields in simulation. Section VI presents exper-
iments with the Sarcos Slave robot arm. Finally, Section VII
concludes the article.

II. DYNAMIC MOVEMENT PRIMITIVES

This section briefly describes the dynamic movement prim-
itive framework, presents a modification to the previously
published work, and shows how to combine the dynamic
equations with a potential field around an obstacle.

A. Original dynamic movement primitives

Dynamic movement primitives can be used to generate
discrete and rhythmic movements. Here, we focus on discrete

movements. A movement is generated by integrating the fol-
lowing set of differential equations1, which can be interpreted
as a linear spring system perturbed by an external force:

τ v̇ = K(g − x)−Dv + (g − x0)f (1)
τ ẋ = v , (2)

where x and v are position and velocity for one degree-
of-freedom of the system; x0 and g are the start and goal
position; τ is a temporal scaling factor; K corresponds to a
spring constant; the damping term D is chosen such that the
system is critically damped, and f is a non-linear function
which can be adapted to allow the generation of arbitrary
complex movements. This first set of equations is referred to
as ‘transformation system’.

The non-linear function is defined as

f(θ) =
∑
i wiψi(θ)θ∑
i ψi(θ)

, (3)

where ψi are Gaussian basis functions, ψi(θ) = exp(−hi(θ−
ci)2) with center ci and width hi, and wi are adjustable
weights. The function f does not directly depend on time;
instead, it depends on a phase variable θ, which goes from 1
towards 0 during a movement and is obtained by the equation

τ θ̇ = −αθ , (4)

where α is a predefined constant. This last differential equation
is called ‘canonical system’. These equations have some
favorable characteristics:

• Convergence to the goal g is guaranteed since f(θ)
vanishes towards the end of a movement (if the weights
wi are bounded).

• The weights wi can be adapted to generate any desired
trajectory.

• The equations are translation invariant.
• The duration of a movement can be altered simply by

changing τ .

To learn a movement from demonstration, first, a move-
ment x(t) is recorded and its derivatives v(t) and v̇(t) are
computed for each time step t. Second, the canonical system
is integrated, i.e., θ(t) is evaluated. Using these arrays, f(θ(t))
is computed based on (1). Thus, finding the weights wi in (3)
is a linear regression problem, which can be solved efficiently.

The motion generated by a DMP is combined with a control
system (Fig. 1). The above differential equations are written
for a one-dimensional system; thus, for each degree of freedom
(here end-effector position, orientation, and finger joint), we
use one transformation system, but couple them to a single
canonical system. Inverse kinematics and dynamics convert the
motion generated by the transformation systems into control
commands.

1We use a different notation than in [1], [2] to high-light the spring-like
character of these equations.

!"#$%&$'

()"$*+,-&'

./"0%/11$%'

2$$34/%5+%3'

./"0%/11$%'

2$$34/%5+%3'

./"0%/11$%'
6

7/8/0'
()"$*+,-&'

9/3$1'

:/&),/"'

:%)*),#$&'

;%)$"0+,/"'

:%)*),#$&'

2)"<$%'

:%)*),#$'

6' 6'6'

Movement Primitives

=+&>'&?$-)@-'?+%+*$0$%&'

7$?$11$"0'4/%-$'

+

-

+

+

+

-

+

+

x
d
, x

d
q
d
, q

d
! finger,

 ! finger,
 ! finger

 x
r
,!

r

x, x ,q, q

!
d
, !

d
, !

d

!, ! , !

U ff

U fb

U

Fig. 1. Block scheme of DMP-based control. The variables x, θ, q, and w
are current end-effector, joint, quaternion, and angular velocity states. U is a
torque command. Subscript d and r mean desired and reference.

B. Modified dynamic movement primitives

We modified the DMP to overcome drawbacks in the above
formulation: if start and goal position, x0 and g, of a movement
are the same, then the non-linear term in (1) cannot drive the
system away from its initial state; thus, the system will remain
at x0. The scaling of f with g − x0 is also problematic if
g− x0 is close to zero; a small change in g may lead to huge
accelerations breaking the limits of the robot.

The new equations of the modified DMP are motivated from
human behavioral data [12] and convergent force fields, which
were observed at the frog leg after spinal-cord stimulation [13],
[14]. We use three key neurophysiological findings from the
frog [13]:
• After stimulating the spinal cord, a force field can be

observed by measuring forces at different leg positions.
These fields are often convergent.

• The magnitude of force fields is modulated in time by
bell-shaped time pulses.

• Simultaneously stimulated force fields add up linearly.
These findings are realized in the model as follows. We make
a first-order approximation of a convergent field around wi

(in 3D Cartesian space of the end-effector),

χi(x,v) = K(wi − x)−Dv . (5)

Each field is modulated over time with a Gaussian function
centered at time ci,

ψi(t) = exp
(
−h(t− ci)2

)
. (6)

We use the summation property to obtain a more complex
field,

a(x,v, t) =
∑
i ψi(t)χi(x,v)∑

i ψi(t)
. (7)

Different from the force fields in frog, here, we use accel-
eration fields, i.e., v̇ = a(x,v, t). In our robot application,
we use inverse kinematics and dynamics to compute the joint
torques.

Combining (5) with (7) results in the equations of motion

v̇ = K
(∑

i ψi(t)wi∑
i ψi(t)

− x
)
−Dv (8)

ẋ = v . (9)

To make the equations converge to the goal g, we add around
g another field (5) and shift the weight from (8) to the new
field. As weight, we use the phase variable θ, as computed by
(4), and thus, the new acceleration field becomes

v̇ = θK
(∑

i ψi(θ)wi∑
i ψi(θ)

+ x0 − x
)

+ (1− θ)K(g − x)−Dv . (10)

We inserted an extra x0 to make the equation translation
invariant. Furthermore, we changed the dependence of ψ on
t to θ. As in the original DMP, this change will allow more
flexibility since we can manipulate θ; absolute timing cannot
be easily modified.

We rewrite (10) to make it look similar to (1) and include
τ , as before, to make the equation invariant with respect to
movement duration. Thus, the transformation system becomes

τ v̇ = K(g − x)−Dv −K(g − x0)θ + Kf(θ) (11)
τ ẋ = v . (12)

Again, we use the same canonical system as before. Towards
the end of a movement, θ approaches 0, as before. Thus,
convergence to the goal g is again guaranteed.

This new formulation can learn movements with the same
start and goal position. Furthermore, the non-linear term that
contains f does not scale anymore with g − x0; thus, small
values of g − x0 do not cause huge accelerations anymore
when changing g (Fig. 2). We use these equations to combine
dynamic movement primitives with potential fields for obstacle
avoidance.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-2 -1 0 1 2

y

x

 0

 1

 2

-2 -1 0 1 2

y

x

Fig. 2. Comparison of goal adaptation between original (Left) and new
(Right) DMP formulation for a 2-dimensional movement in (x, y). The same
demonstrated movement (solid curve) and goals (black dots) are used for both
formulations. The dashed curves show the results of changing the goal g for
the entire movement (without changing wik).

C. Combining a modified DMP with a potential field

For combining a DMP with a potential field for obstacle
avoidance, we generate movements in operational space. Thus,
the variable x describes the end-effector position. An obsta-
cle’s position and potential field are more easily available

in end-effector rather than joint space. Thus, using a DMP
in operational space allows a simple addition of a repellent
acceleration term ϕ(x,v) to the transformation system (11),

τ v̇ = K(g − x)−Dv −K(g − x0)θ + Kf(θ)
+ϕ(x,v) (13)

τ ẋ = v . (14)

The repulsive acceleration is the negative gradient of a poten-
tial field, which depends on the relative position and velocity
of the end-effector to the obstacle. This addition allows the
generated path of a movement to be changed by the properties
of the potential function.

III. POTENTIAL FIELDS FOR OBSTACLE AVOIDANCE

Starting from a static potential field, we develop a new
potential field, a dynamic field that takes into account the
relative velocity between end-effector and obstacle. In this
article, we consider only a single point obstacle.

A. Static potential field

The potential-field method was proposed by Khatib [10] and
Krogh [8]. By design, each obstacle creates a potential field
U(x) at the position x of a point moving in the field. In our
case, the additional term in (13) is given by the gradient of the
field, i.e., ϕ(x) = −∇U(x). Khatib’s potential field is static
since it depends only on the distance p(x) between current
position and obstacle,

Ustatic(x) =

{
η
2

(
1

p(x) −
1
p0

)2

: p(x) ≤ p0

0 : p(x) > p0

}
, (15)

where p0 is the radius of influence of the obstacle, and η is a
constant gain.

We found that this potential field did not allow smooth
obstacle avoidance since it ignores the end-effector’s speed
and direction of movement. Thus, we propose a new potential
field.

B. Dynamic potential field

The dynamic potential field is a function of the end-effector
position x and its velocity v. Because of this velocity depen-
dence, we call this field ‘dynamic’. We design the dynamic
potential field to achieve the following properties:

1) The magnitude of the potential decreases with the dis-
tance from x to the obstacle.

2) The magnitude of the potential increases with the speed
of x and is zero when the speed of x is zero.

3) The magnitude of potential decreases with the angle
between the current velocity direction of x and the di-
rection towards the obstacle. In addition, the magnitude
is zero, if the angle is over 90◦ (i.e., end-effector moves
away from the obstacle).

Based on these arguments, we define the dynamic potential
function as

Udyn(x,v) =

{
λ(−cosθ)β ||v||p(x) : π

2 < θ ≤ π
0 : 0 ≤ θ ≤ π

2

}
(16)

where λ is a constant for the strength of the entire field, β is a
constant. For all experiments in this article, we chose β = 2.
The angle θ is taken between the current velocity v and the
end-effector position x relative to the position of the obstacle,

cos θ =
vTx
||v|| p(x)

. (17)

The angle θ is limited to the range from 0 to π. Figure 3
shows the potential field in 2D end-effector space assuming
equal velocity for each position x. For moving obstacles, we
use as input (x,v) to the potential function (16) the position
and velocity relative to the obstacle.

−1
−0.5

0
0.5

−1

0

1
0

0.1

0.2

0.3

0.4

xy

po
te

nt
ia

l

Velocity Vector

Goal

Start

−0.8 −0.6 −0.4 −0.2 0 0.2

−0.4

−0.2

0

0.2

0.4

0.6

x

y

Fig. 3. Dynamic potential field in two-dimensional task space.

The obstacle force is derived from a negative gradient of
the potential function as

ϕ(x,v) = −∇x Udyn(x,v)

= λ(− cos θ)β−1 ||v||
p

(
β∇x cos θ − cos θ

p
∇xp

)
(18)

where π/2 < θ ≤ π. The dynamic movement primitive can
be modified with this dynamic potential field.

IV. AVOIDING LINK COLLISIONS

The end-effector is guided by the artificial potential field
around an obstacle. However, planning in end-effector space
may not prevent collisions between robot links and obstacles.
To solve such a problem, various link-collision avoidance
mechanisms were proposed. Khatib proposed to put an ad-
equate number of points, which are subjected to the potential
field, on the manipulator links [10]. The resulting sum of
forces shields entire links from obstacles. Maciejewski and
Klein proposed an inverse-kinematics model in which the null-
space is constrained to avoid link collisions [15]. We combined
the Maciejewski and Klein approach with our framework.

In the following, we briefly describe Maciejewski’s method.
The general solution for velocity based inverse kinematics is
given by

θ̇ = J+ẋ + (I− J+J)ξ , (19)

where θ̇ is the joint velocity vector, ẋ is the end-effector
velocity vector (here, as provided by the DMP), and J and
J+ are the Jacobian matrix and its pseudo inverse. The first
term on the right side of the equation shows the least squares

solution. The second term is the null-space movement with
arbitrary velocity ξ. This null-space movement is adapted for
obstacle avoidance.

Let xo be the closest point to the obstacle (Fig. 4) and Jo
the corresponding Jacobian, then

ẋo = Jo θ̇ . (20)

We choose for the null-space constraint, a movement ẋo away
from the obstacle, here, ẋo = −const · ∇Ustatic(xo). Using
(19), we substitute θ̇ in (20) and obtain the desired null-space
velocity ξ,

ξ =
[
Jo(I− J+J)

]+ (
ẋo − Jo J+ẋ

)
. (21)

This result is substituted back into (19) and simplified [15]:

θ̇ = J+ẋ +
[
Jo(I− J+J)

]+ (
ẋo − Jo J+ẋ

)
(22)

This method can be directly applied to our approach of
combining dynamic movement primitives with potential fields.
Since we plan in operational space, we can use Maciejewski’s
method directly for the inverse kinematics.

Obstacle

 XO
X

Path by DMP

Fig. 4. Location of xo and x on the manipulator.

The question arises which point to put into the potential
field equation (16), the end-effector end-point x or the closest
point on the manipulator to the obstacle, xo. We experimented
with both alternatives. In the case of x, the end-effector space
planning is unaffected by the link avoidance algorithm. In the
case of xo, the DMP has also feedback from the link states.
Compared with Khatib’s approach, the potential field does not
directly affect the joint states, but it makes the DMP change
the end-effector movement, which helps the closest link to
detour the obstacle.

V. SIMULATION

We first use two-dimensional point movements to demon-
strate the effect of a potential field on the dynamic movement
primitives. Second, we demonstrate avoiding a moving obsta-
cle in end-effector space and with a 7-degree-of-freedom robot
arm simulator. Third, we used this simulator and a three-link
planar arm to demonstrate the avoidance of link collisions.

A. General methods

As desired trajectories, we generated minimum-jerk move-
ments between a start and goal point. We used these trajec-
tories as ‘demonstrated movements’, from which, the weights
wi of a DMP are obtained as described in Section II-A. The
DMPs could reproduce these movements accurately. Finally,
a movement was generated under the influence of a potential
field.

B. Moving point with fixed obstacle

First, we consider only moving points, no links. Figure 5
and 6 show the simulation result for a collision-free movement
of an ‘end-effector’ imitating a learned movement. In this
simulation, a fixed point obstacle is located on the center of the
work space. The target end-effector movement passes through
the obstacle. The dynamic potential field produces smoother
movements than the static potential field.

Start Goal

Start

Goal

Fig. 5. Movement generation with static potential field (solid curve). The
obstacle is in the center of each graph. The target movement is shown as
dashed line.

start goal

start

goal

start goal start

goal

Fig. 6. Movement generation with dynamic potential field (solid curve). The
obstacle is in the center of each graph. The target movement is shown as
dashed curve.

C. Avoiding a moving obstacle

Our obstacle avoidance approach allows online adaptation
to moving obstacles. Figure 7 shows the simulation result for
a moving obstacle. Initially, a point obstacle is located on

the left bottom of the work space, and then it moves toward
the right top with constant velocity. The conventional static
potential method shows an unstable avoidance movement,
which oscillates. On the other hand, the dynamic potential
method results in a smooth obstacle-avoidance movement.

t = 0.76 s

Start

Goal

Start

Goal

t = 1.05 s

Start

Goal

Start

Goal

t = 1.34 s

Start

Goal

Start

Goal

t = 4.2 s

Start

Goal

Start

Goal

Fig. 7. Movement generation with moving obstacle comparing static (Left
column) with dynamic potential field (Right column). The target movement
is shown with a dashed line.

In the following, we use only the dynamic potential field.
Figure 8 shows avoiding a moving obstacle with a simulated
robot arm. This arm has the dimensions and degrees of
freedom of our Sarcos Slave robot arm used in the experiment
in Section VI. The simulated robot arm could avoid the moving
obstacle.

D. Link-collision avoidance

We study the link-collision avoidance first with a three-link-
planar-arm simulation and second with a simulated 7 degree-
of-freedom manipulator in 3D space (see Fig. 8). Figure 9
shows the three-link-manipulator movements with DMP and

Fig. 8. Seven-degree-of-freedom robot arm avoiding a moving obstacle (red ball) while trying to reproduce a demonstrated end-effector trajectory. Demonstrated
trajectory (red curve) and reproduction with dynamic potential field (blue curve) are shown.

dynamic potential field. Without a link-avoidance algorithm,
a collision occurs between link and obstacle (Figure 9 A).
This collision can be avoided by using the algorithm described
in Section IV (Figures 9 B and C). For this algorithm, we
tested two variants. If using the end-effector x as input into
the potential field, the end-effector moved closer to the target
line than if using xo as input. In the case of xo, the movement
is detoured by the link interaction.

We use the simulated 7 degree-of-freedom manipulator for
a quantitative test to compare between the two alternatives
for link-avoidance (Section IV). In the test, the end-effector
is moved along a predefined curve, and the obstacle is put
at random positions in between robot base and end-effector
trajectory. Depending on the strength, λ, of the potential field,
we can make either the error of the end-effector small relative
to the unperturbed movement - the error is computed as
normalized mean squared error (nMSE) between two curves
- or we increase the minimum distance between manipulator
and obstacle. Thus, we have a trade-off between these two
optimization criteria. We plotted both of these criteria in one
diagram for various values of λ (Fig. 10). For each λ value and
condition (input x or xo), we simulated 100 movements. In the
graph (Fig. 10), we used only the data of the successful runs,
in which the end-effector reached the goal position within a
given time window and without collision.

In Fig, 10, we compare the alternatives x and xo as input
for the potential field. For x, we got smaller nMSE values
for given minimum distances to the obstacle. Thus, as above,
using x as input gave the better result. However, if we compare
the robustness of the obstacle-avoidance movement, we got
a different result. Here, robustness means the percentage of
successful trials. This percentage was 96.7% for xo and 75.9%
for x as input.

VI. ROBOT EXPERIMENT

We applied our framework for object manipulation with a
redundant robot arm.

A. Methods

Our experimental platform is a seven-DOF hydraulically
actuated robot arm (Sarcos Slave Arm, from Sarcos, Salt Lake
City). Its range is comparable to that of a human arm. As
obstacle, we use one small red ball of 2.3 cm radius; its

coordinates were obtained beforehand. In future work, we plan
to use a visual system to extract the coordinates of this ball.

To achieve object manipulation, we combined three com-
ponents: position, orientation, and finger primitives for the
end-effector (Fig. 1). Position primitives describe the end-
effector movement in Cartesian space; orientation primitives
describe the gripper orientation in quaternion space, and a
finger primitive is used for the finger joint angle. Thus, we
used eight transformation systems, and each transformation
system provides desired states, such as position, velocity, and
acceleration. All transformation systems are linked to one
canonical system (Section II-A). The desired position, quater-
nion, and angle states are mapped onto control commands
using inverse kinematics and dynamics (Fig. 1).

For position and orientation control, we used a velocity
based inverse kinematics controller with position and quater-
nion feedback, which uses a unit quaternion q,

q =
[
η
ε

]
=
[
η ε1 ε2 ε3

]T
, (23)

where η and ε are the scalar and vector parts. An end-
effector orientation can be described by a direction vector r
(with ‖r‖ = 1) and a rotation, ϕ, around this vector. The
corresponding quaternion is given by

η = cos
(ϕ

2

)
, (24)

ε = r sin
(ϕ

2

)
. (25)

To use an inverse kinematics algorithm based on a unit
quaternion, a suitable orientation error is formulated as

e0 = ηdε− ηεd − εd × ε , (26)

where (ηd, εd) and (η, ε) are the desired and current orientation
represented as quaternions.

Therefore, the task space reference velocity ẋr and angular
velocity wr in Fig. 1 can be computed as

ẋr = ẋd + Kp(xd − x) (27)
ωr = ωd −Koeo

= ωd −Ko (ηdε− ηεd − εd × ε) , (28)

where wd is desired angular velocity. Kp and Ko are feedback
gain constants.

A

Collision!!

Goal
Start

Obstacle

B

Goal
Start

Obstacle

C

Goal
Start

Obstacle

Fig. 9. Three-link manipulator avoiding a point obstacle. (A) Without
avoiding link collisions. (B) and (C) using Maciejewski and Klein’s algorithm
[15] to avoid link collisions, in (B), using the end-effector position x as input
into the dynamic potential field and in (C), using the closest point xo on the
manipulator as input.

To imitate human manipulation, a teacher first demonstrated
the desired movement using the Sarcos Master robot arm,
and we recorded the required parameters, such as, position,
orientation, and finger angle. For the robot experiment in this
article, we recorded a grasping, a placing, and a releasing
movement. Then, for each DMP, we obtained the weights wi
(Section II-A) such that the DMP reproduced the demonstrated
motion. For obstacle avoidance, as before, we added the
repellent force from our dynamic potential field to the DMP.

0.05 0.1 0.15 0.2
0

0.002

0.004

0.006

0.008

0.01

0.012

n
M

S
E

Min Distance

X
O

X

Fig. 10. Trade off between minimum distance to obstacle and nMSE
along tracked trajectory for various values of λ, the strength of the dynamic
potential field. The two alternatives x and xo as input to the potential field
are compared.

B. Results

The robot arm could grasp an object, place it to a different
location, and release it again. During the placing motion, the
robot smoothly avoided an obstacle in mid-flight using the
dynamic potential field (Fig. 11 and 12).

Fig. 11. End-point trajectory for the robot experiment in Fig. 12. The dashed
curve shows the movement without obstacle and the solid curve with obstacle.

VII. CONCLUSIONS AND FUTURE WORK

We combined the dynamics movement primitive (DMP)
framework with potential fields for online obstacle avoidance.
DMP provided us with a framework to reproduce a movement
from human demonstration. Since the movement is represented
with a set of differential equations, it has attractor dynamics,
and a perturbation can be automatically corrected for. As
perturbation, for obstacle avoidance, we added a repulsive
force around the obstacle. Thus, the robot could avoid the
obstacle while being attracted to the original demonstrated
movement. This article is the first that demonstrates this
combination and shows its successful application in a real
robot.

Furthermore, we introduced a new potential field that
together with DMPs results in smooth obstacle avoidance.
Interestingly, in comparison, a static potential field could not
produce smooth movements, particularly, if the end-effector
directly approached the obstacle. These movements seem to

Fig. 12. Obstacle avoidance with the Sarcos Slave Arm. (Top row) Reproduction of a demonstrated movement; (Bottom row) result of obstacle avoidance
with potential field. Red dots show the reproduced end-effector trajectory from the DMP, and blue dots show the modified end-effector trajectory by the
potential field.

require a dependence on the relative velocity between obstacle
and end-effector.

This article studied only a single point obstacle. Complex
obstacles may be described using several points. For many
obstacles, however, the superposition of potential fields may
contain local minima. Alternatively, a potential field could be
chosen to match the shape of the obstacle. A solution to this
problem is part of future research.

We represented a movement in operational space. The DMP
described the movement of the end-effector. Thus, we needed
inverse kinematics to map a movement onto the joint angles.
A null-space optimization was used that avoids collisions of
the manipulator links with the obstacle. The potential field
takes as one of its inputs the position of the end-effector. As
alternative input to the potential field, since link-avoidance
requires the computation of the closest point on the manipu-
lator to the obstacle, we tested using this closest point instead
of the end-effector. The advantage of using the closest point
was robustness; more movements reached the goal without
collision and within a given time. On the other hand, tracking
a demonstrated movement was better when using the end-
effector as input to the potential field.

We plan to use the presented framework for movement
generation and obstacle avoidance in a full-body humanoid
robot. Thus, besides the arms, also head and legs could use
dynamic potential fields for obstacle avoidance. Furthermore,
we plan to use visual feed-back to detect an obstacle’s position.
With this feed-back, our framework allows real-time reaction
to moving obstacles.

ACKNOWLEDGMENT

This research was supported by NSF, DFG, and NASA.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in International
Conference on Robotics and Automation. Washington, DC: IEEE, 2002,
pp. 1398–1403.

[2] ——, “Learning attractor landscapes for learning motor primitives.”
in Advances in Neural Information Processing Systems, S. Becker,
S. Thrun, and K. Obermayer, Eds., vol. 15. MIT Press, Cambridge,
MA, 2003, pp. 1523–1530.

[3] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, plan-
ning, learning, and imitation with dynamic movement primitives,” in
Workshop on Bilateral Paradigms on Humans and Humanoids, IEEE
International Conference on Intelligent Robots and Systems, Las Vegas,
NV, 2003.

[4] S. Schaal, “Dynamic movement primitives: A framework for motor con-
trol in humans and humanoid robotics,” in 2nd International Symposium
on Adaptive Motion of Animals and Machines (AMAM), 2003.

[5] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in
International Conference on Machine Learning, 1997.

[6] A. Billard and R. Siegwart, “Robot learning from demonstration,”
Robotics and Autonomous Systems, vol. 47, pp. 65–67, 2004.

[7] C. L. Nehaniv and K. Dautenhahn, “The correspondence problem,” in
Imitation in animals and artifacts, K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA, USA: MIT Press, 2002, pp. 41–61.

[8] B. H. Krogh, “A generalized potential field approach to obstacle
avoidance control,” in International Robotics Research Conference,
Bethlehem, PA, 1984.

[9] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast
mobile robots,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 19, pp. 1179–1187, 1989.

[10] O. Khatib, “Real-time obstacle avoidance for manipulators and fast
mobile robots,” International Journal of Robotics Research, vol. 5, p. 90,
1986.

[11] O. Brock and O. Khatib, “Real-time re-planning in high-dimensional
configuration spaces using sets of homotopic paths,” in Proceedings of
the International Conference on Robotics and Automation, vol. 1. IEEE,
2000, pp. 550–555.

[12] H. Hoffmann and S. Schaal, “Human movement generation based on
convergent flow fields: a computational model and a behavioral exper-
iment,” in Advances in Computational Motor Control VI, R. Shadmehr
and E. Todorov, Eds., San Diego, CA, 2007.

[13] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi, “Convergent force fields
organized in the frog’s spinal cord,” Journal of Neuroscience, vol. 13,
no. 2, pp. 467–491, 1993.

[14] H. Hoffmann, P. Pastor, and S. Schaal, “Dynamic movement primitives
for movement generation motivated by convergent force fields in frog,”
in Fourth International Symposium on Adaptive Motion of Animals and
Machines, R. Ritzmann and R. Quinn, Eds., Case Western Reserve
University, Cleveland, OH, 2008.

[15] A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinemat-
ically redundant manipulators in dynamically varying environments,”
International Journal of Robotics Research, vol. 4, pp. 109–116, 1985.

