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Abstract— Dynamical systems can generate movement tra- state. Different from the above mentioned continuous cbntr
jectories that are robust against perturbations. This article 0n|y a few control commands need to be specified, and the

presents an improved modification of the original dynamic ; ; ; ; .
movement primitive (DMP) framework by ljspeert et al [1], dlﬁergntlal equation generates the corresponding trajgc
reducing the control load.

[2]. The new equations can generalize movements to new i . .
targets without singularities and large accelerations. Frther- A reahzatlc_)n_pf such dynamlcal_ systems adgmgmlc
more, the new equations can represent a movement in 3D movement primitivegl], [2], [6]. In this framework, differ-

task space without depending on the choice of coordinate ential equations are adapted to generate given movements.

system (invariance under invertible affine transformatiors). Our ; ;
modified DMP is motivated from biological data (spinal-cord Together these equations can form a library of movement

stimulation in frogs) and human behavioral experiments. We primitives. Despite these pOSSIbI|It.IeS,_ a weak point af th
further extend the formalism to obstacle avoidance by explting ~ framework has been the generalization to new movement
the robustness against perturbations: an additional term § targets; this generalization could be unnatural and pose
added to the differential equations to make the robot steer technical difficulties for the robotic execution (Sectidh |
around an obstacle. This additional term empirically descibes In the present manuscript, we introduce a new formulation

human obstacle avoidance. We demonstrate the feasibilityfo that th bl o fi
our approach using the Sarcos Slave robot arm: after learnig at overcomes these problems. Qur new equations are mo-

a single placing movement, the robot placed a cup between two tivated from neurophysiology. In frog, when stimulating th
arbitrarily given positions and avoided approaching obstales.  spinal cord and measuring the resulting forces at the faot fo
different leg postures, a force field can be constructed [7].
l. INTRODUCTION These fields were suggested as building blocks for movement
Humanoid robot assistants have great potential in thgeneration [8]. Based on properties of these force fields,
future for helping people who cannot help themselves. Likaye derive our new dynamic equations. These equations
wise, robotic prostheses will be of great benefit for those whgeneralize movements to new targets in a way that overcomes
have partly or completely lost a limb. Currently, dexterougroblems of the previous formulation and results in a more
humanoid robots (e.g., Sarcos CB [3]) and robotic prosthethuman-like movement adaptation.
arms (e.g., Dean Kamen's Luke Arm [4]) are available. But Furthermore, different from previous work [1], [2], we
we lack the knowledge of controlling them efficiently. Foruse dynamical systems to generate trajectories in the task
example, still many robots try to follow precomputed trajecspace of a robot, while the robot’s joints are controlled
tories. Such an approach, however, is unsuitable in a humgsing inverse kinematics and dynamics [9]. This approach
environment, which presents many unexpected changes. Feis several advantages: manipulated objects and obstacles
prosthetic robot arms, another dominant control approaeite in the same space as the dynamical system; we have no
is to continuously update the position of the end-effectatorrespondence problem between a human demonstrator and
in close-loop through the human; for the control commandhe robot, and the movement generation is not restricted to
for example, a joystick in the shoes [4] or recording fromy specific robot.
the motor cortex [5] have been explored. Such continuous Finally, we extend our dynamical systems to include obsta-
control, however, presents a high cognitive and attentiongle avoidance. In a previous study, we added to our dynamic
load for the human operator. equations the gradient of a potential field around an olsstacl
Dynamical systems offer an alternative approach [1], [2]10]. Potential fields are often used for obstacle avoidance
[6]. A movement trajectory is not pre-defined or pre-planneq11], but may lead to local minima if several obstacles are
but generated during the movement from a differentigbresent [12]. Here, we add a term that empirically describes
equation. The dynamical system represents a whole flodow humans steer around obstacles [13]. For this term, we
field instead of a single-trajectory, like splines do. Thusprove that our dynamical system converges at the desired
a suitably chosen flow field can automatically correct fogoal position even for arbitrarily-many obstacles.
perturbations of the state and guarantee convergence @l a go The remainder of this article is organized as follows.

. _ Section 1l describes the original form of dynamic move-
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Science Foundation grants ECS-0325383, 11S-03128020082995, ECS- MeNt primitives and mentions advantages and shortcomings.
0326095, ANI-0224419, the DARPA program on Learning Loctiomg and ~ Section Il presents the new formulation, which overcomes
the ATR Computational Neuroscience Laboratories. ~ ~~ these shortcomings, and describes the motivation from bi-
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demonstrates convergence of the movement to the desired By settingr, we can choose the duration of a movement
goal in the presence of obstacles. Section V demonstrates without changing the movement trajectory.

our framework with the Sarcos Slave robot arm. We show However, this formalism has also Shortcomings:
real-time adaptation to changing movement targets and to _

. If start and end-point of a movement are the sames
moving obstacles.

g, no movement will be generated(t) = 0.

II. DYNAMIC MOVEMENT PRIMITIVES - If g is close toxg, a small change irg may lead to
huge accelerations (Fig. 2) that break the limits of the
robot.

- If changingg across the zero point, the whole movement
inverts (Fig. 2).

A. One-dimensional system In this article, we introduce a new formulation of dynamic

equations, which overcomes these shortcoming and keeps the

davorable features mentioned above. A further problem that
we address arises for many-dimensional systems.

We first describe dynamic movement primitives (DMPs)
for a one-dimensional state variable and, then, show how
many-dimensional systems are dealt with.

A DMP generates a movement trajectaryt) with ve-
locity v(t). The equations of motion are motivated from th
dynamics of a damped spring attached to a goal posifion

and perturbed by a non-linear acceleration: B. Many-dimensional system

70 = K(g—2x)—Dv+(g9—x0)f(s) (1) The above equations are written for a one-dimensional
i o= v, (2) system. For many dimensions, each dimension can be de-
scribed by equation (1) and each dimension has its own set of

where z is the start point of a movemenis™ the spring parametersy;. For all dimensions, the same phase variable

constant,) a damping constant, a constant scaling factor s can be used. Thus, a single canonical system drives the
of the movement duration, anfl a parametrized non-linear non-linear functions for all dimensions.

function. The functionf is defined as We want to apply DMPs to describe the end-effector
> Yils)w motion in three-dimensional task space. For this appboati
f(s) = S o) (3)  we need to formulate the equation of motion (1) for each

dimension. However, the behavior of the differential equa-

with Gaussian functions (s) = exp(—hi(s —¢;)?). Instead tions will depend on the orientation of the coordinate syste
of time, f depends explicitly on a phase variale in task space (Fig. 1). Such a dependency is undesired. The
new DMP version that we are going to present in this article
is invariant under the choice of coordinate system.
whereq is a predefined constant. The advantage of using (4)
instead of makingf directly depend on time is that we can
control the movement duration just by changingvithout
changing the movement trajectory: the differential equreti )
are scale-invariant about time. The state variahinitially v
set to 1. In the limits — 0, the functionf vanishes and
(1) becomes a linear spring equation that converges. to
Equation (4) has been called ‘canonical system’. o

To reproduce a desired trajectory, we adapt the parameters oy X
w;. For this adaptation, the following four steps are carried
out: first, a movement(¢) is recorded and its derivatives Fig. 1. Original form of dynamic movement primitives deperah choice
v(t) and o(t) are computed for each time steép Second, of coordinate system. Two coordinate systems are plottgd @ad (x'.y").
#(t) is computed based on (1) Third, (4) i integrated anf 2 e cordnate tem, it andend o of empuemen
s(t) evaluated. Forth, using these time arrays, we find th@oduce the desired trajectory, since the motion will berieed toz’ = 0.
weightsw; in (3) by linear regression, which can be solved

TS = —as , 4)

y

efficiently.
Dynamic movement primitives have several favorable fea- Ill. NEW FORM OF DMP
tures: We motivate our new dynamical-systems equations from

+ Any smooth movement can be generated with a pMmPreurophysiology, show invariance under invertible affine
+ The differential equations converge to the goal poingransformations, and demonstrate the generalization w ne

¢ and automatically adapt to perturbations of the stat@0vement targets.

x. This flexibility is an advantage over a functional — .

. 4 R .~ A. Motivation from neurophysiology

representation of a movement trajectory, like in splines. . . _
+ The generated movement adapts online to a Change OfTO motivate our new equations for movement generation,

the goalg. we use three key findings of spinal force fields in frog [7]:

+ The differential equations are translation invariant. 1) These force fields are often convergent.



2) The magnitude of force fields is modulated in time by Apart from (11), the formalism of our modified DMP is the
bell-shaped time pulses. same as the original DMP; the constantan be multiplied
3) Simultaneously stimulated force fields add up linearlyto the left side of (11). As before, the parameters are
These findings suggest that a limb moves along a trajectotgarned by computing(s) for a given desired trajectory.
by activating different convergent force fields in sequencg_ |nvariance under affine transformation
[7]. Here, we build a qn‘ferenUaI equation based on a Different from the original DMP, the new form is invariant
sequence of convergent fields. However, instead of force, WE Ler rotations of the coordinate svstem. Generally. éomiat
use acceleration fields. Thus, as in the original form of DMP, y ) Y, &0

. : .~ 11) is invariant under invertible affine transformatiorfs o
we use a separate inverse-dynamics controller to obtain the . . .
x and v. To demonstrate this invariance, we substitute
control torques.

We describe the acceleration fields in 3D task space. These x = Sx’ xo = Sx;
fields are a function of the end-effector positignand its v — Sv/ K — SK/S-!
velocity v. For simplicity, we use linear fields v - Sv D - SD'S-!
a;(x,v) =K(w; —x) — Dv | (5) g = Sg, (12)

which are centered atv;. Here, we assume that no ex- hereS is the i ible t ¢ i trix. To adapt
ternal forces act on the limb, apart from constant forceﬁ\f‘ eres Is the invertivie transtormation matrix. 10 adap

like gravity. Equation (5) can be interpreted as a lineaf © parametersv; for generating a d-esi.red traje_ctox;(t),
apprgxima){ion(g)f an arb(itr)ary differentiabﬁe acceleratield € need.to comput_é(s). After substituting (12) into (11),
(Taylor expansion up to first term). Moreover, (5) describe@e non-linear functiorf becomes

the dynamics of a mass point (mass=1) that is connectéd = S (K 'v' — (g’ —x') + K''D'v' + (g’ — x{)s)
with a linear spring to a point at;, having spring constant — Sf . (13)
K and damping constard.

Each field is modulated over time with a Gaussian functiopubstituting (12) and’ = Sf” into (11), we obtain for the
centered at time;, prim variables the same equation as (11). Thus, we have

) shown invariance under the above transformation.
Vilt) = exp (=hilt = )%) - ©) ¢ Movement generalization to new target
Using this time modulation and the above mentioned sum- g adapt a movement to a new gaal we just change
mation property, we obtain a new more complex field, ¢ in (11), and the whole trajectory adapts accordingly. This
. i (tai(x, v) parameter may be changed at the beginning of a movement
a(x,v,t) = w : (7)  or even during the movement. Compared to the original form,

o ) _ _ movement adaptation improved (Fig. 2). Critically, the fhon
Substituting (5) in (7) and setting = a results in the |inear term does not scale anymore with— x,), avoiding

equations of motion some of the previous shortcomings (see Section II).
. > wi(t)wy )
v = K|=——F——-x)—-Dv (8) 2k 2F
x = v. 9) ;

To make the equation of motion converge to the ggalve
add aroundg another linear convergent field (5) and shift o
the weight from (8) to the new field. As weight, we use ‘ t ‘

the phase variable, as computed by (4), and thus, the new Time Time
acceleration field becomes 2r 2r
;i (8)W5
¢ - SK<M+XO_X> |
> vi(s) *
+ (1-9K(g—x)—Dv . (10) 0
We inserted an extrx, to make the equation translation h Py ) h Py )
invariant. Furthermore, we changed the dependenceaft Time Time
tos, asinthe orlglpal DMP. Thus, we us.e the_ same CanonICEIIg. 2. Comparison of goal adaption between original (top)rand new
system (4). Equation (10) can be rewritten into (bottom) form of dynamic movement primitives. Graphs showsample
movementz(t) to the original goal (red solid curve) and its adaptation to
v=K(g—x)—Dv—-K(g—x0)s + Kf(s) . (11) new goals (blue dashed curves). As the time of goal switchghvese either

0 (left column) or 0.4 (right column).
This equation is similar to the original form of DMP - see

(1). The functionf(s) is the same as defined in (3). In the Furthermore, we tested how the adaptation to a changing
limit s — 0, both forms are the same and convergegto goal g in the new equation compares with human behavior.
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In a separate experiment [14], some of us recorded human
movements with a stylus on a graphics tablet. Subjects made wl
curved movements towards a target displayed on a screen.
During half of the trials (200ms after movement onset),

the target jumped to a different location, and we observed
how the subjects adapted their movement to the new goal. 20 -
The observed movement adaptation could be explained by
changingg in equation (11) - see Fig. 3 and [14]. Here, we

20 |

adapted the parametexs such that the differential equation 2 o 2
reproduced a subject’s average movement to the original s
goal. Fig. 5. Change of steering angdﬂ_ Here, the parameters = 1000 and
B = 20/7 are used, the same as in the robot experiments.
our dynamic movement primitives. The change in steering
014 014 direction changes the velocity vecteras follows,
E E
> o1 > o1 v=Rvyp , (16)
006 006 whereR is a rotational matrix with axis = (o — x) x v
Ry E—— o1 ow  om and angle of rotation ofr/2; vector o is the position of
X[l Xl the obstacle. Equation (16) can be derived by writings
Fig. 3. Goal adaptation of the new DMP equations comparedutoam v = [v cos(p); v sin(ip)] in the plane spanned Ky —x) and

behavior. (Left) Trajectories on a graphics tablet for ombject: raw
trajectories (yellow and cyan) and their means (red and)tdue shown.
The red curve is the movement to the original goal, and the bluve is the
adaptation to the switching target. (Right) The adaptatibour dynamical
system to the new target (green dotted) is compared withxperignental
data (blue dashed).

v and by deriving this expression with respect to time.
We append the obstacle induced change in velocity as extra
term to our dynamic motion equation; thus we choose

P(x,v) = yRvpexp(—fyp) , 17)

with ¢ = cos™((o — x)Tv/(lo — x| - |[v])); this value
is always positive. Obstacle-avoidance movements with thi

IV. OBSTACLE AVOIDANCE =-av
extended DMP are shown in Fig. 6.

We exploit the robustness of dynamical systems against
perturbations for obstacle avoidance. To account for the .
avoidance behavior, an additional tegmix, v) is added to

our differential equation (11), os L .

v=K(g—x)-Dv-K(g—x0)s+Kf(s)+p(x,v). (14)

We first consider one obstacle with fixed position, then, many

obstacles, and, finally, moving obstacles. sl

A. Single static obstacle

Fajen and Warren [13] found a differential equation that Ta 05 0 05 1
models human obstacle avoidance. Their equation describes X

the steering angle (Fig. 4), which is modeled to change Fig. 6. Obstacle avoidance in 2D space. Three separate neowerare
according to shown, each with a different obstacle position (black d@al positions

are marked by circles. Here, for simplicitf(s) = (g — xo)s; thus, terms
depending ors vanish. The goal positions were shifted by 0.01 to the right
from the lines going through start and obstacle positions.

For illustration, (15) is plotted in Fig. 5. For large angles

¢ approaches zeros, i.e., a movement away from the obsta4n the following, we show that (14) with (17) converges

cle needs no correction. We combine equation (15) witto the goal positiong. First, we demonstrate convergence
for one obstacle, and, then, extend to many obstacles. For

¢ =ypexp(—=LFlg|) . (15)

v @0 Obstacle t — oo, the terms in (14) that depend onapproach 0
exponentially; thus, we just need to study convergence of
Velocity ® the reduced equation

v =K(g — x) — Dv +yRvpexp(—fp) . (18)

O End-effector position
X

Fig. 4. Definition of the steering angle. The statdx; v] = [g; 0] is a stationary point in the equation.

All other states converge to this point, which we will show
by constructing a Lyapunov function [15]. As Lyapunov



function candidatd’(x, v), we use the energy of the linear p(x, v) becomes
spring systemy = K(g — x) — Dv (here, using unit mass), .
P(x,v) =7 Ri(v—0)piexp(—Bpi).  (23)

V(x,v) = %(g ) K(g - x) + %vTV . @9)
. The above convergence proof does not hold for (s, v)

To prove convergence, we need to shbw< 0 for v # 0, becausev’R,;0; does not vanish. However, in most cases,
. ) ) for t — oo, the obstacles will either move away from the
Vo= Vx4 vty robot (x,v) = 0) or come to a standstill (reduction to

—(g—x)"Kv+v'y static case). Thus, the robotic motion will converge again.

= —vI'K(g—x)+vIK(g—-x)-vIDv

+vIRvyexp(— ) -
B WTD 900 p(=0¢) 20 In a robot experiment, we show the utility of our new
= v bvs<0. (20) framework by demonstrating movement adaptation to chang-

The damping matrixD is negative definite by choice to iNg targets and obstacle avoidance.

guarantee damping. The teraf Rv is 0 since the matrix A. Methods

R is a rotation by 90 degrees. if = 0 andx # g, then
V = 0; however, ifx # g thenv # 0, andV changes.  We used a ten degree-of-freedom (DOF) Sarcos anthropo-

Thus, according to LaSalle’s theorem [15]converges tg. morphic robot arm (Fig. 8 and 9). This robot has seven DOF
Therefore, we have shown that our extended DMP equatiofy the arm and three for the fingers.

V. ROBOT DEMONSTRATION

converge globally to the goal positign With our dynamical system, we describe the motion of the
hand, the end-effector. To compute the control torqueseat th
B. Many static obstacles arm joints, we used inverse kinematics and dynamics [9]; the

This convergence is further guaranteed if we have mofBverse kinematics took also into account the orientatibn o

than one obstacle. Here, the perturbation tqs, v) be- the hand [10]. The control loop ran at 480 Hz.
comes We obtained the desired end-effector motion from human

demonstration. A demonstrator moved an exoskeleton robot
px,v) = VZRN% exp(=A¢i). (1) arm (Sarcos Master arm). In this article, we demonstrated
the motion of placing a cup on a table. The recorded motion
wheregp; = cos™'((0; —x)"v/(|o; — x| - [v[)). Since each \as ysed to compute the parameters of the non-linear
term vI'R,;v vanishes, the above energy term (19) is agaifnction f(s) in the dynamical-systems equations.
a Lyapunov function of the system. Figure 7 shows sample For the parameters in our dynamical system, we made

3

solutions for many obstacles. the following choices. The centers of 1;(s) were fixed
3r A and logarithmically distributed betweén01 and1. We set
v -. the bandwidth parametets to h; = 0.5(c; — ¢;—1) 2. The
2 | '- decay factora. was chosen such that= 0.001 at the end
. . of a movement. As spring constakt, we used a diagonal
s 1l matrix with K;; = 150. The dampingD was chosen to make

the system critically damped);; = 2/ K;;. For obstacle
avoidance, we used the parametérs 20/7 and~y = 1000.

° ’ | 2 To test online adaption in our robot setup, we used a

stereo-vision system to obtain the position of the obstacle

1 o5 0 o5 . and the target (60 Hz sampling rate). The vision system
X extracted color blobs: we used a blue ball as obstacle and a

Flg. T vodance of multiple obstacles (black dots). Tetgeies for  green coaster as target (final position of the placing move-
t start posit . Here, = (g —x0)s. :

ferent start positions are shown. Here, for simplicls) = (g —xo)s ment). The location of these color blobs was transformed

into Cartesian-space coordinates. The obtained positibns

target,g, and obstaclep, were updated in real time in our
We can extend our equations to moving obstacles. To avogifferential equations.

collisions, we need to consider the relative velocity betmwe
the end-effector and the obstacle, not just the end-effectd- Results
velocity itself. Therefore, for each obstaclewe compute  The robot could reproduce a demonstrated movement

C. Moving obstacles

©; in the reference frame of the obstacle, and generalize it to a new target by changing ogljin
(0; — x)T(v — &) the differential equations (Fig. 8). If the target changed
@; = cos ! ( ! - ) , (22) during the movement, the end-effector motion adapted to
l0i — x| - |[v = i this new target (see video supplement). In addition, thetrob

whereo; is the velocity of obstaclé. Equation (16) needs to avoided a static obstacle in its path, which was hit when our
be adapted as well to the relative velocity; thus, the adbpt@bstacle avoidance was switched off (video supplement). Fo



a moving obstacle, the robot corrected its end-effectoranot

adapted our dynamical system to generate the demonstrated

away from the approaching obstacle, and, still, this motiomotion. Third, the robot tracked the solution of our equatio

converged at the desired goal (Fig. 9, video supplement).

0

Fig. 8. Placing a cup with the Sarcos Slave arm. The first romwsh
the reproduction of a demonstrated movement. The secondshows the
generalization to a new target position.

of motion, while it was integrated. Since we decoupled
trajectory generation and robot control, our robot could be
easily replaced by any robotic manipulator with at least six
DOF and sufficient working range. Finally, the possibility t
cover a range of motions by changing only a few parameters,
like the goal position, will probably simplify the controf o
full-body humanoid robots and prosthetic arms.

B. Future Works

In future work, we will apply our framework to a full-
body humanoid robot (Sarcos CB). Furthermore, we aim to
control prosthetic arms. Here, the human wearer will first
choose a movement primitive from a library, focus on the
movement goal, while an eye-tracker extracts the fixation
point, and then, our dynamical system will generate the
whole movement, including automatic obstacle avoidance.
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