
Biologically-inspired dynamical systems for movement generation:
automatic real-time goal adaptation and obstacle avoidance

Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal

Abstract— Dynamical systems can generate movement tra-
jectories that are robust against perturbations. This article
presents an improved modification of the original dynamic
movement primitive (DMP) framework by Ijspeert et al [1],
[2]. The new equations can generalize movements to new
targets without singularities and large accelerations. Further-
more, the new equations can represent a movement in 3D
task space without depending on the choice of coordinate
system (invariance under invertible affine transformations). Our
modified DMP is motivated from biological data (spinal-cord
stimulation in frogs) and human behavioral experiments. We
further extend the formalism to obstacle avoidance by exploiting
the robustness against perturbations: an additional term is
added to the differential equations to make the robot steer
around an obstacle. This additional term empirically describes
human obstacle avoidance. We demonstrate the feasibility of
our approach using the Sarcos Slave robot arm: after learning
a single placing movement, the robot placed a cup between two
arbitrarily given positions and avoided approaching obstacles.

I. INTRODUCTION

Humanoid robot assistants have great potential in the
future for helping people who cannot help themselves. Like-
wise, robotic prostheses will be of great benefit for those who
have partly or completely lost a limb. Currently, dexterous
humanoid robots (e.g., Sarcos CB [3]) and robotic prosthetic
arms (e.g., Dean Kamen’s Luke Arm [4]) are available. But
we lack the knowledge of controlling them efficiently. For
example, still many robots try to follow precomputed trajec-
tories. Such an approach, however, is unsuitable in a human
environment, which presents many unexpected changes. For
prosthetic robot arms, another dominant control approach
is to continuously update the position of the end-effector
in close-loop through the human; for the control command,
for example, a joystick in the shoes [4] or recording from
the motor cortex [5] have been explored. Such continuous
control, however, presents a high cognitive and attentional
load for the human operator.

Dynamical systems offer an alternative approach [1], [2],
[6]. A movement trajectory is not pre-defined or pre-planned,
but generated during the movement from a differential
equation. The dynamical system represents a whole flow
field instead of a single-trajectory, like splines do. Thus,
a suitably chosen flow field can automatically correct for
perturbations of the state and guarantee convergence to a goal
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state. Different from the above mentioned continuous control,
only a few control commands need to be specified, and the
differential equation generates the corresponding trajectory,
reducing the control load.

A realization of such dynamical systems aredynamic
movement primitives[1], [2], [6]. In this framework, differ-
ential equations are adapted to generate given movements.
Together these equations can form a library of movement
primitives. Despite these possibilities, a weak point of this
framework has been the generalization to new movement
targets; this generalization could be unnatural and pose
technical difficulties for the robotic execution (Section II).

In the present manuscript, we introduce a new formulation
that overcomes these problems. Our new equations are mo-
tivated from neurophysiology. In frog, when stimulating the
spinal cord and measuring the resulting forces at the foot for
different leg postures, a force field can be constructed [7].
These fields were suggested as building blocks for movement
generation [8]. Based on properties of these force fields,
we derive our new dynamic equations. These equations
generalize movements to new targets in a way that overcomes
problems of the previous formulation and results in a more
human-like movement adaptation.

Furthermore, different from previous work [1], [2], we
use dynamical systems to generate trajectories in the task
space of a robot, while the robot’s joints are controlled
using inverse kinematics and dynamics [9]. This approach
has several advantages: manipulated objects and obstacles
are in the same space as the dynamical system; we have no
correspondence problem between a human demonstrator and
the robot, and the movement generation is not restricted to
a specific robot.

Finally, we extend our dynamical systems to include obsta-
cle avoidance. In a previous study, we added to our dynamic
equations the gradient of a potential field around an obstacle
[10]. Potential fields are often used for obstacle avoidance
[11], but may lead to local minima if several obstacles are
present [12]. Here, we add a term that empirically describes
how humans steer around obstacles [13]. For this term, we
prove that our dynamical system converges at the desired
goal position even for arbitrarily-many obstacles.

The remainder of this article is organized as follows.
Section II describes the original form of dynamic move-
ment primitives and mentions advantages and shortcomings.
Section III presents the new formulation, which overcomes
these shortcomings, and describes the motivation from bi-
ology. Section IV shows the extension of our dynamical
systems for obstacle avoidance. A proof is presented that



demonstrates convergence of the movement to the desired
goal in the presence of obstacles. Section V demonstrates
our framework with the Sarcos Slave robot arm. We show
real-time adaptation to changing movement targets and to
moving obstacles.

II. DYNAMIC MOVEMENT PRIMITIVES

We first describe dynamic movement primitives (DMPs)
for a one-dimensional state variable and, then, show how
many-dimensional systems are dealt with.

A. One-dimensional system

A DMP generates a movement trajectoryx(t) with ve-
locity v(t). The equations of motion are motivated from the
dynamics of a damped spring attached to a goal positiong
and perturbed by a non-linear acceleration:

τ v̇ = K(g − x) −Dv + (g − x0)f(s) (1)

τẋ = v , (2)

wherex0 is the start point of a movement,K the spring
constant,D a damping constant,τ a constant scaling factor
of the movement duration, andf a parametrized non-linear
function. The functionf is defined as

f(s) =

∑

i
ψi(s)wi

∑

i
ψi(s)

s , (3)

with Gaussian functionsψi(s) = exp(−hi(s− ci)2). Instead
of time, f depends explicitly on a phase variables,

τ ṡ = −α s , (4)

whereα is a predefined constant. The advantage of using (4)
instead of makingf directly depend on time is that we can
control the movement duration just by changingτ without
changing the movement trajectory: the differential equations
are scale-invariant about time. The state variables is initially
set to 1. In the limits → 0, the functionf vanishes and
(1) becomes a linear spring equation that converges tog.
Equation (4) has been called ‘canonical system’.

To reproduce a desired trajectory, we adapt the parameters
wi. For this adaptation, the following four steps are carried
out: first, a movementx(t) is recorded and its derivatives
v(t) and v̇(t) are computed for each time stept. Second,
f(t) is computed based on (1). Third, (4) is integrated and
s(t) evaluated. Forth, using these time arrays, we find the
weightswi in (3) by linear regression, which can be solved
efficiently.

Dynamic movement primitives have several favorable fea-
tures:

+ Any smooth movement can be generated with a DMP.
+ The differential equations converge to the goal point
g and automatically adapt to perturbations of the state
x. This flexibility is an advantage over a functional
representation of a movement trajectory, like in splines.

+ The generated movement adapts online to a change of
the goalg.

+ The differential equations are translation invariant.

+ By settingτ , we can choose the duration of a movement
without changing the movement trajectory.

However, this formalism has also shortcomings:

- If start and end-point of a movement are the same,x0 =
g, no movement will be generated,v̇(t) = 0.

- If g is close tox0, a small change ing may lead to
huge accelerations (Fig. 2) that break the limits of the
robot.

- If changingg across the zero point, the whole movement
inverts (Fig. 2).

In this article, we introduce a new formulation of dynamic
equations, which overcomes these shortcoming and keeps the
favorable features mentioned above. A further problem that
we address arises for many-dimensional systems.

B. Many-dimensional system

The above equations are written for a one-dimensional
system. For many dimensions, each dimension can be de-
scribed by equation (1) and each dimension has its own set of
parameterswi. For all dimensions, the same phase variable
s can be used. Thus, a single canonical system drives the
non-linear functions for all dimensions.

We want to apply DMPs to describe the end-effector
motion in three-dimensional task space. For this application,
we need to formulate the equation of motion (1) for each
dimension. However, the behavior of the differential equa-
tions will depend on the orientation of the coordinate system
in task space (Fig. 1). Such a dependency is undesired. The
new DMP version that we are going to present in this article
is invariant under the choice of coordinate system.

x

y

x’y’

Fig. 1. Original form of dynamic movement primitives depends on choice
of coordinate system. Two coordinate systems are plotted (x,y) and (x’,y’).
In the primed coordinate system, start and end point of a sample movement
(red curve) are on the y’-axis. In this case, the motion generation will fail to
produce the desired trajectory, since the motion will be restricted tox′ = 0.

III. NEW FORM OF DMP

We motivate our new dynamical-systems equations from
neurophysiology, show invariance under invertible affine
transformations, and demonstrate the generalization to new
movement targets.

A. Motivation from neurophysiology

To motivate our new equations for movement generation,
we use three key findings of spinal force fields in frog [7]:

1) These force fields are often convergent.



2) The magnitude of force fields is modulated in time by
bell-shaped time pulses.

3) Simultaneously stimulated force fields add up linearly.

These findings suggest that a limb moves along a trajectory,
by activating different convergent force fields in sequence
[7]. Here, we build a differential equation based on a
sequence of convergent fields. However, instead of force, we
use acceleration fields. Thus, as in the original form of DMP,
we use a separate inverse-dynamics controller to obtain the
control torques.

We describe the acceleration fields in 3D task space. These
fields are a function of the end-effector positionx and its
velocity v. For simplicity, we use linear fields

ai(x,v) = K(wi − x) − Dv , (5)

which are centered atwi. Here, we assume that no ex-
ternal forces act on the limb, apart from constant forces,
like gravity. Equation (5) can be interpreted as a linear
approximation of an arbitrary differentiable acceleration field
(Taylor expansion up to first term). Moreover, (5) describes
the dynamics of a mass point (mass=1) that is connected
with a linear spring to a point atwi, having spring constant
K and damping constantD.

Each field is modulated over time with a Gaussian function
centered at timeci,

ψi(t) = exp
(

−hi(t− ci)
2
)

. (6)

Using this time modulation and the above mentioned sum-
mation property, we obtain a new more complex field,

a(x,v, t) =

∑

i
ψi(t)ai(x,v)
∑

i
ψi(t)

. (7)

Substituting (5) in (7) and settinġv = a results in the
equations of motion

v̇ = K

(∑

i
ψi(t)wi

∑

i
ψi(t)

− x

)

− Dv (8)

ẋ = v . (9)

To make the equation of motion converge to the goalg, we
add aroundg another linear convergent field (5) and shift
the weight from (8) to the new field. As weight, we use
the phase variables, as computed by (4), and thus, the new
acceleration field becomes

v̇ = sK

(∑

i
ψi(s)wi

∑

i
ψi(s)

+ x0 − x

)

+ (1 − s)K(g − x) − Dv . (10)

We inserted an extrax0 to make the equation translation
invariant. Furthermore, we changed the dependence ofψ on t
to s, as in the original DMP. Thus, we use the same canonical
system (4). Equation (10) can be rewritten into

v̇ = K(g − x) − Dv − K(g − x0)s+ Kf(s) . (11)

This equation is similar to the original form of DMP - see
(1). The functionf(s) is the same as defined in (3). In the
limit s→ 0, both forms are the same and converge tog.

Apart from (11), the formalism of our modified DMP is the
same as the original DMP; the constantτ can be multiplied
to the left side of (11). As before, the parameterswi are
learned by computingf(s) for a given desired trajectory.

B. Invariance under affine transformation

Different from the original DMP, the new form is invariant
under rotations of the coordinate system. Generally, equation
(11) is invariant under invertible affine transformations of
x and v. To demonstrate this invariance, we substitute

x = Sx′

v = Sv′

v̇ = Sv̇′

g = Sg′ ,

x0 = Sx′

0

K = SK′S−1

D = SD′S−1

(12)

where S is the invertible transformation matrix. To adapt
the parameterswi for generating a desired trajectoryx(t),
we need to computef(s). After substituting (12) into (11),
the non-linear functionf becomes

f = S
(

K′−1v̇′ − (g′ − x′) + K′−1D′v′ + (g′ − x′

0
)s

)

:= Sf ′ . (13)

Substituting (12) andf = Sf ′ into (11), we obtain for the
prim variables the same equation as (11). Thus, we have
shown invariance under the above transformation.

C. Movement generalization to new target

To adapt a movement to a new goalg, we just change
g in (11), and the whole trajectory adapts accordingly. This
parameter may be changed at the beginning of a movement
or even during the movement. Compared to the original form,
movement adaptation improved (Fig. 2). Critically, the non-
linear term does not scale anymore with(g − x0), avoiding
some of the previous shortcomings (see Section II).
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Fig. 2. Comparison of goal adaption between original (top row) and new
(bottom) form of dynamic movement primitives. Graphs show asample
movementx(t) to the original goal (red solid curve) and its adaptation to
new goals (blue dashed curves). As the time of goal switch, wechose either
0 (left column) or 0.4 (right column).

Furthermore, we tested how the adaptation to a changing
goal g in the new equation compares with human behavior.



In a separate experiment [14], some of us recorded human
movements with a stylus on a graphics tablet. Subjects made
curved movements towards a target displayed on a screen.
During half of the trials (200ms after movement onset),
the target jumped to a different location, and we observed
how the subjects adapted their movement to the new goal.
The observed movement adaptation could be explained by
changingg in equation (11) - see Fig. 3 and [14]. Here, we
adapted the parameterswi such that the differential equation
reproduced a subject’s average movement to the original
goal.
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Fig. 3. Goal adaptation of the new DMP equations compared to human
behavior. (Left) Trajectories on a graphics tablet for one subject: raw
trajectories (yellow and cyan) and their means (red and blue) are shown.
The red curve is the movement to the original goal, and the blue curve is the
adaptation to the switching target. (Right) The adaptationof our dynamical
system to the new target (green dotted) is compared with the experimental
data (blue dashed).

IV. OBSTACLE AVOIDANCE

We exploit the robustness of dynamical systems against
perturbations for obstacle avoidance. To account for the
avoidance behavior, an additional termp(x,v) is added to
our differential equation (11),

v̇ = K(g−x)−Dv−K(g−x0)s+Kf(s)+p(x,v) . (14)

We first consider one obstacle with fixed position, then, many
obstacles, and, finally, moving obstacles.

A. Single static obstacle

Fajen and Warren [13] found a differential equation that
models human obstacle avoidance. Their equation describes
the steering angleϕ (Fig. 4), which is modeled to change
according to

ϕ̇ = γ ϕ exp(−β |ϕ|) . (15)

For illustration, (15) is plotted in Fig. 5. For large angles,
ϕ̇ approaches zeros, i.e., a movement away from the obsta-
cle needs no correction. We combine equation (15) with

ϕ

End−effector position

Velocity

x

v Obstacleo

Fig. 4. Definition of the steering angleϕ.
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Fig. 5. Change of steering angleϕ. Here, the parametersγ = 1000 and
β = 20/π are used, the same as in the robot experiments.

our dynamic movement primitives. The change in steering
direction changes the velocity vectorv as follows,

v̇ = Rvϕ̇ , (16)

whereR is a rotational matrix with axisr = (o − x) × v

and angle of rotation ofπ/2; vector o is the position of
the obstacle. Equation (16) can be derived by writingv as
v = [v cos(ϕ); v sin(ϕ)] in the plane spanned by(o−x) and
v and by deriving this expression with respect to time.

We append the obstacle induced change in velocity as extra
term to our dynamic motion equation; thus we choose

p(x,v) = γRvϕ exp(−βϕ) , (17)

with ϕ = cos−1((o − x)T v/(|o − x| · |v|)); this value
is always positive. Obstacle-avoidance movements with this
extended DMP are shown in Fig. 6.
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Fig. 6. Obstacle avoidance in 2D space. Three separate movements are
shown, each with a different obstacle position (black dot).Goal positions
are marked by circles. Here, for simplicity,f(s) = (g − x0)s; thus, terms
depending ons vanish. The goal positions were shifted by 0.01 to the right
from the lines going through start and obstacle positions.

In the following, we show that (14) with (17) converges
to the goal positiong. First, we demonstrate convergence
for one obstacle, and, then, extend to many obstacles. For
t → ∞, the terms in (14) that depend ons approach 0
exponentially; thus, we just need to study convergence of
the reduced equation

v̇ = K(g − x) − Dv + γRvϕ exp(−βϕ) . (18)

The state[x;v] = [g; 0] is a stationary point in the equation.
All other states converge to this point, which we will show
by constructing a Lyapunov function [15]. As Lyapunov



function candidateV (x,v), we use the energy of the linear
spring system,̇v = K(g−x)−Dv (here, using unit mass),

V (x,v) =
1

2
(g − x)T K(g − x) +

1

2
vT v . (19)

To prove convergence, we need to showV̇ < 0 for v 6= 0,

V̇ = ∇xV
T ẋ + ∇vV

T v̇

= −(g − x)T Kv + vT v̇

= −vT K(g − x) + vT K(g − x) − vT Dv

+ γvTRvϕ exp(−βϕ)

= −vT Dv < 0 . (20)

The damping matrixD is negative definite by choice to
guarantee damping. The termvT Rv is 0 since the matrix
R is a rotation by 90 degrees. Ifv = 0 and x 6= g, then
V̇ = 0; however, if x 6= g then v̇ 6= 0, and V̇ changes.
Thus, according to LaSalle’s theorem [15],x converges tog.
Therefore, we have shown that our extended DMP equations
converge globally to the goal positiong.

B. Many static obstacles

This convergence is further guaranteed if we have more
than one obstacle. Here, the perturbation termp(x,v) be-
comes

p(x,v) = γ
∑

i

Rivϕi exp(−βϕi) , (21)

whereϕi = cos−1((oi − x)T v/(|oi − x| · |v|)). Since each
term vT Riv vanishes, the above energy term (19) is again
a Lyapunov function of the system. Figure 7 shows sample
solutions for many obstacles.
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Fig. 7. Avoidance of multiple obstacles (black dots). Trajectories for
different start positions are shown. Here, for simplicity,f(s) = (g−x0)s.

C. Moving obstacles

We can extend our equations to moving obstacles. To avoid
collisions, we need to consider the relative velocity between
the end-effector and the obstacle, not just the end-effector
velocity itself. Therefore, for each obstaclei, we compute
ϕi in the reference frame of the obstacle,

ϕi = cos−1

(

(oi − x)T (v − ȯi)

|oi − x| · |v − ȯi|

)

, (22)

whereȯi is the velocity of obstaclei. Equation (16) needs to
be adapted as well to the relative velocity; thus, the adapted

p(x,v) becomes

p(x,v) = γ
∑

i

Ri(v − ȯi)ϕi exp(−βϕi) . (23)

The above convergence proof does not hold for thisp(x,v)
becausevT Riȯi does not vanish. However, in most cases,
for t → ∞, the obstacles will either move away from the
robot (p(x,v) = 0) or come to a standstill (reduction to
static case). Thus, the robotic motion will converge again.

V. ROBOT DEMONSTRATION

In a robot experiment, we show the utility of our new
framework by demonstrating movement adaptation to chang-
ing targets and obstacle avoidance.

A. Methods

We used a ten degree-of-freedom (DOF) Sarcos anthropo-
morphic robot arm (Fig. 8 and 9). This robot has seven DOF
for the arm and three for the fingers.

With our dynamical system, we describe the motion of the
hand, the end-effector. To compute the control torques at the
arm joints, we used inverse kinematics and dynamics [9]; the
inverse kinematics took also into account the orientation of
the hand [10]. The control loop ran at 480 Hz.

We obtained the desired end-effector motion from human
demonstration. A demonstrator moved an exoskeleton robot
arm (Sarcos Master arm). In this article, we demonstrated
the motion of placing a cup on a table. The recorded motion
was used to compute the parameterswi of the non-linear
function f(s) in the dynamical-systems equations.

For the parameters in our dynamical system, we made
the following choices. The centersci of ψi(s) were fixed
and logarithmically distributed between0.001 and1. We set
the bandwidth parametershi to hi = 0.5(ci − ci−1)

−2. The
decay factorα was chosen such thats = 0.001 at the end
of a movement. As spring constantK, we used a diagonal
matrix withKii = 150. The dampingD was chosen to make
the system critically damped,Dii = 2

√
Kii. For obstacle

avoidance, we used the parametersβ = 20/π andγ = 1000.
To test online adaption in our robot setup, we used a

stereo-vision system to obtain the position of the obstacle
and the target (60 Hz sampling rate). The vision system
extracted color blobs: we used a blue ball as obstacle and a
green coaster as target (final position of the placing move-
ment). The location of these color blobs was transformed
into Cartesian-space coordinates. The obtained positionsof
target,g, and obstacle,o, were updated in real time in our
differential equations.

B. Results

The robot could reproduce a demonstrated movement
and generalize it to a new target by changing onlyg in
the differential equations (Fig. 8). If the target changed
during the movement, the end-effector motion adapted to
this new target (see video supplement). In addition, the robot
avoided a static obstacle in its path, which was hit when our
obstacle avoidance was switched off (video supplement). For



a moving obstacle, the robot corrected its end-effector motion
away from the approaching obstacle, and, still, this motion
converged at the desired goal (Fig. 9, video supplement).

Fig. 8. Placing a cup with the Sarcos Slave arm. The first row shows
the reproduction of a demonstrated movement. The second rowshows the
generalization to a new target position.

Fig. 9. Avoiding an approaching obstacle (white disc) - see movie
supplement. The first row shows the motion without obstacle and the second
row with moving obstacle.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

To generate robotic movements, dynamic movement prim-
itives are an alternative to preplanned and precomputed
trajectories. Movements are generated from differential equa-
tions, and the attractor dynamics of these equations allow the
automatic adaptation of a movement trajectory to changing
targets and obstacles in the way.

In this article, we presented new equations that overcome
problems of the original DMP formulation. Our modified
DMP is invariant with respect to rotations of the coordinate
system in task space and generalizes movements to new
targets more like humans do. The new equations were
motivated from biology: they were derived from properties
of convergent force fields in frogs.

Furthermore, we added obstacle avoidance by adding an
acceleration term to the equation of motion. This term was
taken from the literature and describes empirically how
humans steer around obstacles. Together with the attractor
dynamics, this term allowed our robot without re-planning
to avoid obstacles, while converging to the original target.
We proved this convergence for arbitrarily-many obstacles.

The feasibility of our new framework was demonstrated
using a Sarcos robot arm. First, we recorded a desired motion
by moving a robotic exoskeleton; alternatively, a visual or
magnetic motion tracking system might be used. Second, we

adapted our dynamical system to generate the demonstrated
motion. Third, the robot tracked the solution of our equation
of motion, while it was integrated. Since we decoupled
trajectory generation and robot control, our robot could be
easily replaced by any robotic manipulator with at least six
DOF and sufficient working range. Finally, the possibility to
cover a range of motions by changing only a few parameters,
like the goal position, will probably simplify the control of
full-body humanoid robots and prosthetic arms.

B. Future Works

In future work, we will apply our framework to a full-
body humanoid robot (Sarcos CB). Furthermore, we aim to
control prosthetic arms. Here, the human wearer will first
choose a movement primitive from a library, focus on the
movement goal, while an eye-tracker extracts the fixation
point, and then, our dynamical system will generate the
whole movement, including automatic obstacle avoidance.
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