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Abstract— We present a new method for reaching in an
initially unknown environment with only haptic sensing. In
this paper, we propose a haptically-guided interleaving planning
and control (HIPC) method with a haptic mapping framework.
HIPC runs two planning methods, interleaving a task-space and
a joint-space planner, to provide fast reaching performance.
It continually replans a valid trajectory, alternating between
planners and quickly reflecting collected tactile information
from an unknown environment. One key idea is that tactile
sensing can be used to directly map an immediate cause of
interference when reaching. The mapping framework efficiently
assigns raw tactile information from whole-arm tactile sensors
into a 3D voxel-based collision map. Our method uses a previ-
ously published contact-regulating controller based on model
predictive control (MPC). In our evaluation with a physics
simulation of a humanoid robot, interleaving was superior at
reaching in the 9 types of environments we used.

I. INTRODUCTION

Consider a visually hard-to-observe environment, such as
a room in total darkness. If the environment is not empty
space, it may be hard to reach a target location. Your reach
may make contact over the surface of your arm as you grope
towards your target. As you encounter objects, you piece
together environmental information that allows you to find a
path to the goal. You may also begin with a simple greedy
reaching strategy. If you encounter obstacles and are unable
to reach your goal, you are likely to increase attention your
attention to the task.

Although many studies have investigated robotic reaching
in readily observable or known environments, there are
few studies of situations that only permit haptic sensing.
Moving a robot arm in cluttered, unknown, and unmod-
eled workspaces can be difficult. What are the roots of
the problem? Firstly, there is no fast, complete sensing
method to fully map unknown objects. Some works have
used the senses of sight and hearing to map environments
(See section II). However, vision or acoustic sensors are
affected by factors such as external sources, occlusions, and
mounting locations. Second, when reaching into unknown
environments, there can be unpredictable collisions. These
collisions lower the tracking ability of a controller and may
result in high contact forces that cause damage to the robot
or environment. Third, geometric planners require knowledge
about obstacles in the environment in order to avoid them.

To solve this reaching problem, we present a few key
ideas. First, we cover the robot arm entirely with tactile sen-
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Fig. 1: A screenshot of our simulated robot (DARCI) hap-
tically reaching into an unknown basket. The red colored
transparent object is a fixed, rigid, and unknown upright
basket. A blue sphere shows the goal location. The left arm
explores from the bottom of the basket and finally reaches
the goal location using a haptic-cost map shown as white
voxels.

sors that measure forces between the robot and the environ-
ment. As the arm encounters obstacles we use a haptic-cost
map generator to create a partially observed obstacle map,
called a haptic-cost map. Second, we propose a haptically-
guided interleaving planning and control method (HIPC) (see
Fig. 2). HIPC contains two sequentially executed planners: a
task-space and a joint-space planner. Each is an interleaving
planning and execution (IPE) system that interleaves running
a planner and a controller that limits contact forces [1],
[2]. The planner continually plans a trajectory based on the
current haptic-cost map. The controller follows the planned
trajectory until given a new trajectory.

Our approach is inspired in part by the human expe-
rience of performing a manipulation task without paying
close attention, noticing that something has gone wrong,
and then carefully and deliberately attempting to perform
the task. In our system, the task-space planner continually
replans a Cartesian space trajectory for the end effector
of the robot arm and follows the trajectory, often snaking
around objects as it regulates contact forces. This task-space
approach is computationally low-cost, can take advantage of
joint redundancy, and has performed well in high clutter [2],
[3]. However, it can become trapped in local minima due
to its greedy policy. The joint-space approach complements
this task-space approach by escaping local minima and
being probabilistically complete. It gives a global solution
with respect to the current haptic-cost map at a higher
computational cost. Then, a joint-space contact-regulating
controller, which is an updated version of our dynamic model
predictive control (MPC) system from [2], tracks this joint-
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Fig. 2: Overview of our haptically-guided interleaving planning and control (HIPC) system. HIPC switches between task-
space planning and control and joint-space planning and control to reach a goal location xgoal. The planners use a
haptic-state checker based on a haptic-cost map. Ψ is tactile feedback. θcmd and θfb are robot arm input and output.

space trajectory.
We evaluated our approach in a variety of static environ-

ments by physically simulating a humanoid robot in Gazebo
(http://gazebosim.org). Our HIPC method outperformed the
independent use of the task-space approach and the joint-
space approach. As our results show, by interleaving these
two approaches, our system uses computational resources
more economically than if it were to only use joint-space
planning, and more frequently finds solutions than if it were
to only use task-space planning. Notably, our system favors
exploitation over exploration. At all times, it is doing its
best to reach the goal rather than producing a full map of
the environment. We have also proved the completeness of
an idealized version of HIPC.

II. RELATED WORKS

The concept of interleaved planning and execution has
a long history, as noted in Ambros-Ingerson and Steel’s
paper [1]. For example, Nourbakhsh and Reza classified
interleaving strategies into two categories; subgoaling and
simplification [4]. In this paper, we use the simplification
strategy that returns a complete plan in a limited period with
an approximated problem. We use our map of the partially
observed environment for the approximation. Recently, Park
et al. showed real-time replanning and execution using a
graphics processing unit (GPU) [5]. Kaelbling and Lozano-
Perez have investigated hierarchical replanning and execution
with geometric reasoning [6]. Our work is also related
to online replanning. For example, Koenig and Likhachev
presented Dynamic A* Lite that is an incremental heuristic
search algorithm [7]. This algorithm speeds up their replan-
ning searches using the experience of previous problems,
which relates to our use of task-space planning.

Our approach is strongly related to sensor-guided real-time
planning methods. Rusu et al. proposed a 3D perception-
based replanning architecture using a voxel-based collision
map constructed from a laser range-finder [8]. For replan-
ning, they presented an offline replanning method using a
sampling-based planner. In contrast, we combine an online
replanning method with a search-based planner to compen-
sate for the limited sensing coverage of the tactile sensor
and we integrate it with a haptic-based reactive controller.

Um et al. proposed a simultaneous planning and mapping
framework using a non-contact 3D depth sensor [9]. The
method is similar in that two mapping and planning processes
are running in parallel, and it uses a configuration-space
planner to achieve probabilistic completeness. In contrast,
we only use haptic sensing and sequentially use task-space
and configuration-space planners. Research, such as [10], has
looked at the problem of registering a pre-existing 3D model
to the world based on tactile sensing. In contrast, our method
does not use a pre-existing model of the world.

We have previously demonstrated the feasibility of whole-
arm tactile sensing, planning, and control on a real robot
[11]. In the current paper, we present HIPC, which formalizes
aspects of this previous proof-of-concept system. In addition,
we present carefully controlled tests based on thousands of
trials in simulation, as well as a proof of completeness.

III. A HAPTICALLY-GUIDED PLANNER

A. Notation and Definition

Let X denote the task space that is an open subset of
R3. To represent the haptic-cost map, we project X into a
discretized three dimensional grid (called a “voxel grid”),
denoted by V , where we define the map as Vmap ⊆ V . We
also use joint space as configuration space (C-space), denoted
by C. C is an open subset of Rn, where n is the number of
degrees of freedom (DoF) of the robot arm. A state in X and
C is valid only when it is collision-free and reachable by the
arm. The computed trajectories in task-space and joint-space
are denoted by Ttask ⊂ X and Tjoint ⊂ C, respectively.

B. Overview of Planning Architecture

The haptic planner consists of two sub planners; a task-
space and a joint-space planner. Both sub planners and their
associated controllers use the architecture depicted in Fig. 2.
For example, given a robotic system with tactile skin, a task
definition module specifies a goal location xgoal ∈ X , then
a manager runs the sub planners in turn, where the planners
return Ttask or Tjoint to reach xgoal. Each planner sends its
trajectory to a corresponding controller that is responsible for
following the trajectory while keeping contact forces low.

The robot with simulation plugins provides its current state
and tactile feedback to the controller and perception modules.



The state contains the location of the end effector x ∈ X and
joint configuration q ∈ C. The tactile feedback is a set of
locations and magnitudes of contact forces. The perception
module constructs Vmap from the tactile sensing skin. The
robot model module uses the robot’s kinematic parameters
to compute various forms of kinematic information, such as
forward kinematics and the locations of arm mesh vertices
Xmesh for the validity check. A haptic-state checker inspects
the validity of each state in a trajectory using the robot model
and the haptic-cost map modules. If any state is invalid, the
planner computes a new trajectory.

C. Planning in Detail

Algorithm 1 shows how the manager alternates the sub
planners and interleaves those with MPC. In the first half
of the algorithm, TaskSpacePlan() generates Ttask. Exe-
cuteMPC() asynchronously runs task-space MPC to track
the computed Ttask in parallel to Algorithm 1 until it is
called again with a new plan. The repetition of task-space
planning and execution results in rapid adaptation in response
to tactile sensing. After the haptic-map updates, the task-
space planner quickly returns a task-space trajectory to the
goal. Task-space MPC runs in a parallel thread at 20 Hz and
takes advantage of redundant degrees of freedom to snake
around obstacles while following the task-space trajectory,
as described in [2]. This task-space subsystem stops when
the end effector reaches a goal region Xgoal ⊂ X , tmax time
elapses, or the arm stops moving. The system decides that
the arm is stuck if the magnitude of the angular difference
between current and past moving averaged joint angle vectors
is smaller than a threshold c.

If the task-space subsystem fails, JointSpacePlan() gen-
erates Tjoint. ExecuteMPC() asynchronously runs joint-
space MPC to follow Tjoint in parallel to Algorithm 1.
The algorithm then monitors the robot’s progress, taking
appropriate action in the event of success or failure. Due
to the higher computational requirements associated with
generating a joint-space plan and the limited ability of joint-
space MPC to move around unforeseen obstacles, the joint-
space subsystem tends to be less adaptive and reactive than
the task-space subsystem. However, the joint-space planner
generates a collision-free trajectory that takes into account
the volume of the arm, which can provide solutions in
situations that cause the task-space subsystem to fail.

By combining these two subsystems, HIPC leverages
the computational efficiency of the task-space planner, the
reaching speed of task-space MPC, and the probabilistic
completeness of the joint-space planner. We now describe
the planners in detail.

1) Task-space Planner: TaskSpacePlan() is an adapted
version of the A∗ search algorithm for repetitive planning.
Since A∗ uses a graph data structure, we define the geometric
structure of X as a graph, G = (V,E), consisting of a set V
of vertices, also called nodes, and a set E of edges. Using
a cell decomposition approach, we represent V and E as
the sets of voxels and connections between adjacent voxels,
respectively [12]. The center location of each voxel v ∈ V

Algorithm 1: Interleaving Planning and Control

Input : xgoal

q, x← GetCurrentState () ;
while true do

t ← 0 ;
repeat
Ttask ← TaskSpacePlan(q, xgoal) ;
ExecuteMPC(Ttask) ;
q, x← GetCurrentState () ;
q̂t ← GetMovingAvg (q) ;
if x ∈ Xgoal then

return success ;

until !(t > tmax or ‖q̂t − q̂t−k∆t‖ < c);

Tjoint ← JointSpacePlan(q, xgoal) ;
ExecuteMPC(Tjoint) ;
t ← 0 ;
repeat

q, x← GetCurrentState () ;
q̂t ← GetMovingAvg (q) ;
if x ∈ Xgoal then

return success ;

until !(t > tmax or ‖q̂t − q̂t−k∆t‖ < c);

is denoted by xv ∈ X . Algorithm 2 shows the detailed flow,
where an evaluated cost function is represented as f(v) =
g(v) + h(v), where g(v) is a path-cost function and h(v)
is an admissible heuristics using Euclidean distance. Finally,
TracePath() returns a minimum-cost path from the graph.

Our system frequently replans to avoid newly found con-
tact locations. We reduce expansion time by storing and
ignoring a list of invalid nodes Vinv , which is appropriate
for static environments. Also for efficiency, we do not take
into account the geometric constraints of the arm. Instead, the
planner finds a trajectory for an approximated representative
volume of the end effector, a sphere of radius r, located at
the tip of the end effector (see Fig. 3). IsStateValid() is a
state checker that inspects the validity of a specified state
discussed in Section III-D.

2) Joint-space Planner: JointSpacePlan() is a sampling-
based planner, which is different from the task-space planner
in that it takes into account the entire volume of the arm.
Algorithm 3 shows the sequence to get Tjoint, where the
sequence is divided into two parts: a goal configuration
selection step and a trajectory planning step.

The goal configuration selection step finds a least-cost and
valid target configuration qgoal from a set of randomly sam-
pled configurations, qrand. The set contains multiple IK solu-
tions from a set of random end-effector poses (xgoal,ηrand),
where ηrand is a set of uniformly distributed quaternions



Algorithm 2: TaskSpacePlan(qinit, xgoal)

Static : Vinv is invalid node list and initially ∅
Local : Vo ← ∅ open node list
Local : Vc ← ∅ closed node list
Set vinit as a voxel of xinit ← FwdKin(qinit) and
add to Vo ;
Set vgoal as a voxel of xgoal ;
repeat

Pick vbest ∈ Vo such that f(vbest) ≤ f(v),
∀v ∈ Vo \ {vbest} ;
Remove vbest from Vo and add to Vc ;
if vbest = vgoal then

return Ttask ← TracePath(vinit,vgoal) ;

Expand ∀v ∈ neighbor(vbest) and v /∈ Vc, Vinv;
if !IsStateValid(v) then

add v to Vinv ;

else if v /∈ Vo then
add v to Vo ;

else if g(vbest)+Distance(vbest,v)< g(v) ;
then

update v’s path cost and backpointer ;

until Vo is empty;

using K. Shoemake’s algorithm [13]:

ηrand = {(x, y, z, w)|x =
√

1− u1 · sin(2πu2)

y =
√

1− u1 · cos(2πu2)

z =
√
u1 · sin(2πu3)

w =
√
u1 · cos(2πu3)},

(1)

where u1, u2, and u3 are independent uniform random values
between 0.0 and 1.0. For each end-effector pose, we find a
single IK solution based on the robot’s current configuration
and using velocity-based inverse kinematics via the Kinemat-
ics and Dynamics Library (http://www.orocos.org). Ideally,
we would instead sample from all feasible configurations.
We exclude invalid states using IsStateValid(). The closest
configuration to initial configuration qinit is selected by
weighted Euclidean distance:

c(q1, q2) = (q1 − q2)TW (q1 − q2), (2)

where W is a positive semi-definite weight matrix, and q1

and q2 are joint-space vectors.
In the trajectory planning step, we use a randomized-

sampling motion planner, RRT-Connect [14], although our
approach could use other planners. The planner computes a
series of states, sums the collision costs along the trajectory
using the haptic-state checker (see section III-D), and returns
the trajectory if the cost is not over some threshold ζc. If the
planner fails to find a trajectory within 30s, it repeats the
planning step with another goal configuration until it finds
a valid trajectory or attempts 10 different configurations. In

Algorithm 3: JointSpacePlan(qinit,xgoal)

repeat
qrand ← IK(xgoal,ηrand) ;
Pick qgoal ∈ qrand such that
c(qgoal, qinit) < c(q, qinit), ∀q ∈ qrand \ {qgoal}
and IsStateValid(qgoal) ;
Tjoint ← RRT-Connect(qinit,qgoal) ;
if Tjoint exists then

Reduce vertices and interpolate Tjoint ;
if IsTrajValid(Tjoint) then

Return Tjoint ;

until Tjoint is not empty;

this paper, we use the first successfully generated trajectory
to decrease execution time.

D. Haptic-state Checker

Our system allows contact between the robot and ob-
stacles, which, in practice, complicates decisions about the
validity of a state or trajectory. The haptic-state checker
consists of the functions IsStateValid() and IsTrajValid(),
which use collision costs and the robot’s workspace to decide
on the validity of a state or trajectory. The collision cost is
the estimated degree of penetration of the robot volume into
obstacle volume on Vmap. Each voxel in Vmap contains a
collision-cost representing the hardness of passing through
the voxel. If the accumulated cost ζ along the arm links is
non-zero, the robot may be in an invalid state.

A variety of factors could result in a state that is achievable
by the robot being labeled as invalid, including sensor
uncertainty, object deformation, and simulation error. To
mitigate these issues, we define soft-collision as a collision
of two bodies with a small amount of penetration. When
ζ is smaller than a threshold ζc, we judge the state valid.
To compute the penetration, we use a VERTEX-VERTEX
collision detection algorithm [15] that declares a collision if
two vertices are within a certain range. We sample Xmesh

from the surface of the robot collision mesh. Then, we find
cost voxels vx ∈ V , which contain x ∈ Xmesh. We are able
to compute the degree of collision ζ by summing the values
of the voxels (see Fig 3).

In addition, we check if Xmesh is in the workspace,
Xworkspace ⊆ X . If at least one vertex is outside
the workspace, the target state is invalid. Algorithm 4
is the pseudo code of IsStateValid() function, where
GetCollisionCost(vx) returns the collision cost of voxel vx
in Vmap. The algorithm calculates ζ, the sum of collision
cost of all mesh voxels. If ζ exceeds ζc the state is invalid.
IsTrajValid() is an extended version of IsStateValid() that
computes the sums the values of ζ from all states in a
sampled trajectory. If the sum is greater than ζc, the trajectory
is invalid.



Algorithm 4: IsStateValid(state s)

sinit ← initial state such that xinit or qinit ;
if sinit == s then

return true ;

else
Vmap ← GetHapticMap() ;
Xmesh ← GetRobotMesh(s) ;
ζ ← 0 ;
for x ∈ Xmesh do

if x /∈ Xworkspace then
return false ;

Pick vx ∈ V that contains x in Cartesian space ;
ζ = ζ+ GetCollisionCost(vx) ;
if ζ > ζc then

return false ;

return true ;
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Occupancy Grid
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Overall cost = Σ(      's collision cost)

Fig. 3: Left: Sampled vertices of a sphere for task-space
planning. Right: Example of a collision-cost computation
on a 2D grid. Grey cells represent detected objects with
non-zero cost. Yellow cells indicate voxels that contain the
sampled vertices. Red cells show the overlapped area of the
two types of cells.

IV. A HAPTIC ENVIRONMENTAL MAPPER

A. Contact forces to tactile feedback

Before we explain map construction, we discuss tactile
feedback. The contact force, denoted by f , consists of a
normal force fn and a tangential force ft. A contact force
is generated when the surfaces of bodies come in contact.
In the dynamic simulator, Gazebo (http://gazebosim.org), the
surface of an object in simulation is a large set of triangular
meshes, called TriMeshes. Inter-penetration of two TriMeshes
creates f proportional to the degree of penetration. Here,
we define raw contact data as a tuple, (p, f, fn), where
p is a contacted location. We are able to utilize this data
for haptic control and mapping, but its direct utilization is
computationally expensive. We simplify the raw data into a
form we call tactile feedback.

Fig. 4 (Left) illustrates this simplification. We first gener-
ate k clusters from the data based on the contact locations,
p, using k-means clustering via Lloyd’s algorithm in the
KMlocal library (http://www.cs.umd.edu/∼mount/). Let n̂i

Raw contact data

Tactile Feedback

Robot's link

Collided objectsClustering

α1

Minimal contact volume

Discretized Contact

Haptic-cost MapCartesian Space

A contact point at (x,y,z)

α2

Fig. 4: Left: Clustering of raw contact data into tactile
feedback. Right: Haptic mapping on a 2D grid. A red
segment shows the minimal volume associated with any
contact, which is placed away from the arm to avoid overlap
between the arm and the map.

denote a unit vector of the sum of fn in cluster i. Then we
compute a representative tuple for each cluster,

(pi, fi, fn,i) = (

m∑
j=1

pj/m,

m∑
j=1

fj , (fi · n̂i)n̂i), (3)

where ∀i ∈ {1, ..., k} and m is the number of raw samples
in cluster i. To distinguish different types of objects (e.g.
movable, compliant, fixed objects) we append the collision
cost γ to the tuple: (p, f, fn, γ). A higher cost represents a
higher stiffness to push or pass a contact. In this paper, we
only use fixed objects with a uniform cost. Tactile sensing
could be used to assign γ values in real time [16], [11].

B. Tactile feeback to a haptic-cost map

Our mapping approach assigns the collision-costs from
tactile feedback to the voxels in Vmap. Rather than use a
single voxel, we define a minimum contact volume B, which
represents the minimal volume associated with any contact
detected by the arm (see Fig. 4 (Right)). In this paper, B is a
line segment between p+α1n̂ and p+ (α1 +α2)n̂, where n̂
is a unit vector of fn. α1 and α2 are a penetration prevention
offset.

V. HAPTICALLY-GUIDED CONTROL

We use the multi-step model predictive control (MPC)
system described in [2] and [11] running at 20 Hz on our
simulated robot. The controllers move the robot arm towards
a goal end effector position or goal joint-space configuration,
while keeping predicted contact and impact forces low. It has
a control horizon of 3 and a prediction horizon of 4, which
gives the controller 4 time steps (each step is 0.05 seconds)
of control (including the current time) and predicts the arm
movement for 4 additional time steps over which it aims to
minimize its cost function. The controller only executes the
current time-step before running the optimizer again.

VI. PROOF OF COMPLETENESS

We now prove completeness for an idealized version
of HIPC. Specifically, we prove that an idealized version
of HIPC is guaranteed to eventually find a path from an
initial configuration, qinit, to a final configuration, qgoal, if
a tractable path exists in a discretized version of a static



environment. We also prove that HIPC will report failure if
no solution exists in the discretized environment.

For a given environment, we define Mall to be a set that
represents a 3D occupancy grid for the environment with
discretization at resolution d. Each element of the set repre-
sents a voxel that is occupied if an object in the environment
intersects any part of the voxel. Qall = Sc(Mall, qinit, qgoal),
where Sc is a joint-space planner with proven completeness
and Qall is a joint-space trajectory that when followed
takes the robot from qinit to qgoal without intersecting any
occupied voxel in Mall. We assume that the controllers we
use result in the robot perfectly following any trajectory. We
also assume the robot perfectly detects when it is about to
enter an occupied voxel of Mall and stops the robot just
before intersection occurs. Thus, the robot never intersects
an occupied voxel of Mall

1.
P (Mall) is the set of all subsets of Mall (i.e. the power

set of Mall). Qall is a solution trajectory from qinit to qgoal
for each element of P (Mall). At any time, the robot can
follow any sequence of trajectories it has taken in reverse
in order to return to qinit. Thus, Sc is guaranteed to return
a solution trajectory for any element of P (Mall) from the
robot’s current configuration qi to qgoal, since the robot can
always return to qinit and then follow Qall.

At each iteration of HIPC, the robot uses its current map
of the world Mi to plan a trajectory Qi = Sc(Mi, qi, qgoal).
It starts with Q0 = Sc(M0, q0, qgoal), where q0 = qinit and
M0 = ∅, which has cardinality of 0, |M0| = 0. The robot
then attempts to follow Qi. It either reaches qgoal or halts.
If it halts, it adds the occupied voxels that caused it to halt
to its map, so |Mi+1| > |Mi|. Since Mi+1 is an element
of P (Mall), the cardinality of Mi strictly increases, and the
maximum cardinality of any element of P (Mall) is |Mall|,
HIPC is guaranteed to result in the robot reaching qgoal.

If no solution exists, Sc will report failure for some Mi,
which can only occur if Qall does not exist. Since our proof
did not use the resolution, d, it holds for any resolution,
although only some resolutions may have solutions.

After following joint-space plan Qi, the robot may follow
any finite-time joint-space trajectory without changing the
result of this proof. The robot either reaches qgoal or adds
new occupied voxels that resulted in halting to Mi+1. Mi+1

must still be an element of P (Mall) and |Mi+1| > |Mi|.
Since the robot can always follow the reverse of a finite-
time trajectory to return to qi, Sc is guaranteed to find a
plan, Qi+1 = Sc(Mi+1, qi+1, qgoal), if a solution exists. We
can model our task-space planner with task-space control as
a subsystem that results in the robot following a sequence
of finite-time joint-space trajectories, where halting and
mapping occur between each trajectory in the sequence.
Thus, task-space planning and control do not change the
completeness of the overall algorithm.

1This avoids problems with finite-precision environment representations,
which can otherwise result in a trapped robot. Additive small-scale space-
filling robot motions, short-range sensing without rigid contact, high-
resolution maps, and backtracking could all help a real robot meet this
requirement.

For our implementation, we use a probabilistically com-
plete joint-space planner that will eventually return a solution
if one exists, but will not report when a solution does not
exist. With minor modification of our proof, one can show
that our idealized version of HIPC would be probabilistically
complete.

VII. EXPERIMENTAL SETUP

We use a physical simulation of our robot DARCI, which
is a Meka M1 Mobile Manipulator. The simulated robot
includes an omnidirectional base with the two humanoid,
7 DoF MEKA M1 arms shown in Fig. 1. We only moved
the left arm (7 DoF) in our experiments. Our system uses
ROS (http://ros.org). To detect collisions, we use virtual
contact sensors on the entire surface of the left arm links that
return raw contact data. We developed three ROS-enabled-
plugins: Gazebo-world-plugin, Gazebo-model-plugin, and
Gazebo-tactile-plugin2. The Gazebo-world-plugin provides
a synchronization interface with ROS, the Gazebo-model-
plugin provides an interface for the Joint Trajectory Action
Controller of ROS at 1 KHz, and the Gazebo-tactile-plugin
generates tactile feedback messages from the raw contact
data at 30 Hz. We ran the simulation on multiple machines,
each with an i7 3.4 GHz CPU and 8 GB of memory.

A. Test Environments

To evaluate our method, we used nine types of parametric
clutter (see Table I). For each type of clutter, we created 1000
specific test environments with parameters randomly sampled
from uniform distributions. Only the geometry varied, since
we used the same physics simulation parameters for all
objects. The objects were rigid and fixed. Descriptions of
some of the dimensions and random variation for these
environments follow:
• Sphere: A sphere with 0.12 m radius randomly placed in

a 0.1 × 0.4 × 0.3 m (length × width × height) volume.
Goal is located 0.03 m behind the sphere.

• Spheres: 30 spheres with 0.08 m radius randomly placed
in a 0.5 × 0.9 × 0.6 m volume. Goal is randomly located
in a 0.3 × 0.55 × 0.35 m volume in front of DARCI.

• Cylinder: Upright cylinder of radius 0.06 m and height
0.4 m randomly placed in a 0.15 × 0.5 m (length × width)
area. Other conditions same as Spheres.

• Cylinders: Eight upright cylinders randomly placed in
rectangular area, 0.5 × 0.9 m. Other conditions same as
Cylinder.

• Wall: A wall, 0.03 × 0.2 × 0.6 m, randomly placed in
the rectangular area, 0.2 × 0.6 m. Goal is located 0.1 m
behind the wall at 0.1 m height.

• Walls: Two parallel walls, 0.03 × 0.15 × 0.6 m, with
0.3 m offset randomly rotated by ±30◦. Goal is located in
between them.

• Window: A wall with a single window, 0.3 m width × 0.2
m height, randomly placed in a 0.1 × 0.4 × 0.3 m volume.
Goal is located at least 0.05 m behind the window.

2We’ve released our Gazebo-tactile-plugin as open source code at gt-ros-
pkg: https://github.com/gt-ros-pkg/gt-meka-sim.



TABLE I: Examples of cluttered environments. Obstacles are
red. The goal is visualized as the small blue sphere.

Sphere Spheres Cylinder

Cylinders Wall Passage

Window Windows Trash can

• Windows: A wall with four windows, 0.25 × 0.2 m with
0.05 m offset, randomly placed in the same way as the
Window.

• Trash can: A round basket with a goal inside it and a 0.1
m radius opening randomly placed in a 0.1 × 0.4 × 0.15
m volume.

B. Evaluation Scheme

We randomly selected an initial end effector location on
a vertical, rectangular plane of 0.6 m width and 0.2 m
height in front of the robot. Then, we chose the robot arm’s
initial configuration using a cost-metric function described
in [17]. We ran, under the same conditions, three different
types of planning methods: HIPC, task-space planning, and
joint-space planning. We assigned success or failure labels
according to whether the end effector reached within a 0.02
m radius spherical volume around the goal within 1,000
seconds.

To compare the performance of HIPC with a complete
planning method in a known environment, we estimated
the maximum success rate of bi-directional RRT using
OpenRave (http://openrave.org). This planner started with
complete knowledge of the test environment. If the planner
could find a solution in that environment without collision
in fewer than 7,000 iterations, we considered the clutter
solvable. To take into account the ball-shaped goal area for
the planner, we created a set of goal configurations. We chose
72 evenly distributed 3D locations on the surface of the ball
and at each location, we selected 512 different quaternion
vectors using the sampleSO3 function in OpenRAVE. We
then found a single IK solution for each of these end effector
poses. While this is an underestimate for the maximum

Fig. 5: Screenshot of haptic mapping and planning in a Walls
type test environment. The white voxels show the haptic-cost
map. The green line shows the path of the end effector for
the last seconds before the robot reached the goal.

success rate, Figure 7 clearly illustrates that close to 100%
of the tasks were solvable.

VIII. RESULTS

As an example, Fig. 5 (Left) illustrates a reaching exper-
iment in a Walls type test environment. The image depicts
the placement of the robot and clutter, and its left arm’s
initial configuration in front of the clutter. The white voxels
inside the two walls represent the detected contacts through
the 565 seconds of HIPC execution. The green line in Fig.
5 (Right) shows the last planned task-space trajectory for
the end effector along with the haptic-cost map used for
planning, Vmap. These figures illustrate that the robot may
only need to sparsely map the environment in order to reach
the goal.

Fig. 6 shows the number of unique contacts that occurred
over time in order to visualize the growth of the robot’s
map, which relates to the proof in Section VI. The red and
blue shadings in the graph indicate the periods of task-space
and joint-space control, respectively. The periods of task-
space control are often longer than the periods of joint-space
control. This is in part due to task-space control continuing
to be active until the joint-space planner returns a plan. The
upper graph represents a successful reach. Although the task-
space planner by itself is not complete, HIPC benefits from
its fast planning and reactive movements. For example, the
haptic-cost map grows while the task-space subsystem is
active. HIPC also benefits from the task-space controller’s
ability to navigate around and through contact well. The
lower graph shows a failed trial wherein HIPC fell into a
degenerate loop. The graph is from the robot arm failing
to sufficiently track the planned joint-space trajectory and
continually colliding with already-mapped obstacles. As a
result HIPC could not collect new contact data and repeatedly
generated similar plans. This illustrates how things can break
down due to imperfect trajectory tracking.

Next, we compared the performance of HIPC to the two
sub methods; a task-space and a joint-space planner. All
three methods used the same initial configuration and goal
locations in the same environment. Fig. 7 shows HIPC had
a higher success rate than the other two methods in all nine
types of environment. Over the total 9,000 trials (1000 trials
per environment), HIPC attained a 93.1% success rate. In
contrast, the task-space and joint-space planners resulted in
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Fig. 6: The number of unique contacts that occurred over
time while reaching in two distinct Walls type environments.
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Fig. 7: Comparison of performance of HIPC and baseline
methods in nine types of environments.

a 77.8% and a 65.4% success rate, respectively. However,
from the estimated maximum success rate (Red line), we
can see that HIPC did not achieve the maximum success rate.
These failures to find a solution could be due to a number
of causes, including the 1000s time limit, MPC trajectory
tracking errors, and haptic-cost map errors.

In 8 of the 9 environment types tested, the task-space
planner outperformed the joint-space planner. In the com-
paratively simple environments, greedy reaching by the task-
space planner saw high success rates. Its ability to snake
around obstacles by controlling contact forces allowed it to
navigate particularly well through clutter. However, in the
Walls type clutter, the task-space planner had a low success
rate because any of the random initial configurations not
aligned with the opening resulted in the arm being trapped
outside the walls. The joint-space planner frequently failed
due to running out of time, since it easily gets stuck and
takes substantial time to replan. For unknown reasons, our
controllers result in the real DARCI robot moving much
faster than the simulated DARCI robot, which bodes well
for future implementations of our system on real robots.

IX. CONCLUSION

We have introduced our haptically-guided interleaving
planning and control framework (HIPC), which interleaves a

task-space planner and controller with a joint-space planner
and controller that use a shared map of the environment
based on accumulated contact information. Both controllers
use our previously published dynamic MPC method to follow
plans while keeping contact forces low.

Using a physical simulation of a humanoid robot, we eval-
uated the performance of HIPC in a variety of environments.
Over all 9000 trials it had a 93.1% success rate. The worst
performance it had in any environment type was an 83.7%
success rate over 1000 trials in the Windows environment
type. HIPC outperformed the two components it interleaves
in all 9 types of environments, which demonstrates the value
of our approach. We also proved that an idealized version of
HIPC is complete for discretized environments.
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