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Abstract— When a mobile manipulator functions as an as-
sistive device, the robot’s initial configuration and the con-
figuration of the environment can impact the robot’s ability
to provide effective assistance. Selecting initial configurations
for assistive tasks can be challenging due to the high number
of degrees of freedom of the robot, the environment, and the
person, as well as the complexity of the task. In addition, rapid
selection of initial conditions can be important, so that the
system will be responsive to the user and will not require the
user to wait a long time while the robot makes a decision.
To address these challenges, we present Task-centric initial
Configuration Selection (TCS), which unlike previous work uses
a measure of task-centric manipulability to accommodate state
estimation error, considers various environmental degrees of
freedom, and can find a set of configurations from which a
robot can perform a task. TCS performs substantial offline
computation, so that it can rapidly provide solutions at run
time. At run time, the system performs an optimization over
candidate initial configurations using a utility function that can
include factors such as movement costs for the robot’s mobile
base. To evaluate TCS, we created models of 11 activities of
daily living (ADLs) and evaluated TCS’s performance with
these 11 assistive tasks in a computer simulation of a PR2,
a robotic bed, and a model of a human body. TCS performed
as well or better than a baseline algorithm in all of our tests
against state estimation error.

I. INTRODUCTION

When faced with the problem of having a mobile robot
perform a manipulation task, the first step is often to select
a configuration or configurations from which to perform the
task. With a good initial configuration, the robot is more
likely to be able to complete the task successfully. Selecting
a good initial configuration can be challenging and has
been addressed in many ways. In our previous work, we
have selected start locations for the robot manually with
trial and error [1], [2], or have used data-driven approaches
using robot-centric success likelihood [3]. In this work we
take a different approach: we present Task-centric initial
Configuration Selection (TCS) (see Figure 1). With a task-
centered focus, we can use specifics of the problem to aid
the robot in finding solutions. Tasks can be challenging if
there are many degrees of freedom in an environment to
customize, or if they require multiple initial configurations
to complete. Our task-centric approach helps address these
issues.

Toward a mobile manipulator assisting motor-impaired
users with activities of daily living (ADLs), we applied TCS
to representations of such tasks. We created models (see
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Fig. 1: Simulation environment of a PR2 robot and a human
in a configurable bed, showing an initial configuration to
shave the user in the bed. TCS finds that putting the robot
behind the bed can be effective.

section III-A.2) for 11 ADL tasks on which to evaluate
our method. We found that TCS returns a solution set of
initial configurations from which the robot can perform
the task despite error in state estimation. TCS uses task-
centric reachability and task-centric manipulability scores to
determine its solution. For simplicity, we will refer to our
task-centric manipulability score as TC-manipulability in the
remainder of this paper. Similiarly, we will refer to our task-
centric reachability score as TC-reachability.

Our method differs from previous research by being task-
centric rather than robot- or object- centric. TCS has three
primary features that distinguish it from related works: the
TC-manipulability measure, consideration of sets of multiple
configurations as a solution, and generalization to environ-
mental degrees of freedom.

As in most real-world robotics applications, when per-
forming assistive tasks with a robot, the robot estimates
the world’s relevant current state. For assistive tasks, the
relevant states may be the pose of the user’s head, the
robot’s current position, the location of the wheelchair,
etc., and there may be estimation errors. Our approach to
selecting initial configurations depends on rough modeling
and heavy precomputation, so our method must be robust
to state estimation error. We use TC-reachability and TC-
manipulability scores based on kinematic isotropy (from [4])
to make our method robustness to such errors.

We found from our previous work in [1] that some tasks
require that the robot use multiple base positions. When
shaving, for example, we found that the robot could not
shave the entirety of the face (both sides) from only one
position. Note that in this paper, the term configuration refers
to both the robot’s position and to the configuration of any
configurable environmental objects. Our method considers



the opportunity of using multiple configurations to perform
a single task.

If the environment is configurable in a way that can
impact performance of a task, the robot may improve its
performance by adjusting the environment appropriately. For
example, if a user with motor impairments is on a config-
urable bed, the robot might be better able to shave the user in
a seated position rather than a supine position. Our method
can be expanded to allow additional configurable degrees
of freedom. In section IV-A.2 we describe our evaluation
of TCS on an environment with 8 configurable degrees of
freedom, including those for the robot and the bed. Our
results suggest that having a user in a configurable bed,
preferably a robotic bed that can be controlled along with
the mobile manipulator, could facilitate the performance of
assistive tasks. As can be seen in section V or specifically
in figure 6, our TCS algorithm uses the capabilities of the
configurable bed to perform the tasks.

II. RELATED WORK

Several bodies of work have examined the proxemics of
human-robot interactions [5], [6], [7], [8], [9]. These works
look at acceptable interpersonal distances between humans
and robots in social settings. For this paper, we do not
consider proxemics or social factors and instead focus on
physical aspects of the task.

Various works have used the concepts of human-robot
proxemics to inform the robot when performing tasks. These
works couple task performance concepts with scoring meth-
ods based on proxemics to select base positions and paths
for the robot and item handover locations [10], [11], [12],
[13]. A thorough survey of human-aware robot navigation
can be found in [14]. We do not address navigation paths
and concentrate on finding fixed final goal configurations
for the mobile robot’s and environment to perform tasks. We
also focus specifically on assistive tasks.

There has been previous work in creating models of human
activities to inform assistive robots. Redmond et al. collected
force and torque data as users performed various activities
of daily living and characterized the tasks by their haptic
characteristics [15]. Hawkins et al. used contact forces from
participants wiping and shaving to create task models to
inform a robot of acceptable and anomalous force character-
istics when performing the task [1]. Jain and Kemp present a
method for improving robot manipulation by creating data-
driven object-centric force models of tasks [16]. For this
paper, we use a simple kinematic task model that represents a
task as a sparse set of goal poses for the robot’s end effector.

Prior research has investigated how to find good poses
for a robot’s mobile base. Hsu et al. presented a method
for selecting a place for an industrial robot manipulator to
perform a series of tasks amidst clutter. They used random-
ized path planners to generate collision free paths for the
arm and they randomly perturb the robot position to find
positions from which the tasks can be performed with low
performance time. However, their approach takes minutes to
select a robot position and is not intended for real-time use
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Fig. 2: The workflow used in TCS.

[17]. Zacharias et al. 2007 introduced and used a method for
representing and scoring the workspace of a robot to create
a capability map. The capability map is the discretized 3-
D workspace around a robot arm, scored by the number of
discretized orientations the end effector can reach at each
discretized 3-D point [18]. Various works have used this
robot-centric capability map to select the robot base position
by overlapping the capability map with end-effector goal
poses [19], [20], [21]. Leidner et al. also addresses regions of
interest and integration with a whole-body controller (doing
whole-body inverse-kinematics) once the task is in progress
[21]. Vahrenkamp et al. inverts the capability map from [18]
to create a grasp-centric scoring method. For a given grasp,
they assign a score to potential robot base positions around
the grasp; the score is the value for that end-effector goal
pose from the capability map. They overlay a scoring map
for each goal grasp to select the robot base position with the
highest score [22].

In contrast, we use two different scoring methods, one
based on finding an inverse-kinematics solution, and one
based on kinematic isotropy from [4]. Our configuration
selection is task-centric, generating a TC-manipulability and
TC-reachability score for each set of initial configurations in
a the task-centric map. By making our method task-centric,
the system can focus on the specifics of the problem, such as
including the additional degrees of freedom when assisting
a user in a configurable bed. Our method discretizes the
initial configuration space instead of the arm’s workspace,
and it keeps goal poses in continuous space. Our method
also returns the solution set of initial configurations rapidly
with its real-time module.

Stulp et al. present what can be described as a task-centric
method for selecting the areas in which to place a mobile
manipulator from which it can perform a grasping task.
Their method uses Monte-Carlo simulation with introduced
pose uncertainty to find base positions with high success
rates. In essence, they simulate the robot performing a cup
grasping task from various base positions and score the base
positions on their success rates. For real-time base position
selection, they convolve uncertainty in robot location with
base position scores to provide an area of high-success



probability. However, their method is used with only 2
degrees of freedom (x and y of base position) and for a single
task consisting of a single grasp pose on a cup in a varying
location [23]. In contrast, we use robot kinematics to score
initial configurations, instead of running simulations. We
consider many degrees of freedom in the initial configuration
space and we consider sets of initial configurations.

(a)

(b)

Fig. 3: The goal poses for the shaving task displayed on
the wheelchair model. Each arrow represents a position and
orientation, 6-DoF end-effector goal pose. (a) viewed from
the front (b) viewed from the side.

III. METHOD

We will first explain the framework of TCS. Afterwards
we will explain some of the specifics of our implementation.

A. Framework

1) A Good Configuration:

An important question to ask is: "What makes an initial
configuration good?”

In this paper we use the term initial configuration to
mean the position and orientation of the robot’s mobile base,
the z-axis spine height of the robot, and any additional
environmental degrees of freedom that are adjustable. We
also consider initial configurations in sets that can be of
cardinality 1 or greater. The goal of selecting initial con-
figurations is to allow the robot to perform a task. The robot
should be able to perform the task from a good set of initial
configurations. We judge the robot’s ability to perform the
task from a set of initial configurations with one measure:

the percent of goal poses its end effector can achieve without
the robot being in collision. If the robot can find an inverse
kinematics (IK) solution to all the goal poses associated with
a task, we judge that the robot can perform the task. However,
there is modeling and state estimation error that may foil
the robot, and the robot does not know how the error will
manifest apriori. From a good set of initial configurations,
the robot should be able to perform the task despite such
error. Our TCS algorithm uses two scores, TC-reachability
and TC-manipulability, and an optimization over a utility
function to select a set of configurations for a task.
2) Task Modeling:
Our aim with task modeling is to create a representation that
allows a robot to efficiently make decisions about its ability
to perform a task. We model each task as a sparse set of
positions and orientations (Cartesian position and quaternion)
for the robot’s end effector. With this representation, we
assume that if the robot can reach all the desired end-effector
poses, it will be able to perform the task. We limited tasks to
one-handed tasks and used only the robot’s left arm in our
evaluation.
3) Nomenclature:

c A task identifier

N.: Number of goal poses for task class ¢

T;: A position and orientation end-effector goal pose.
xr; € RS

T, Set of goal poses, {1, 2, ..., znN,} for task class
c.

qj: A joint configuration of the robot arm. ¢; € R",
where n is the number of DoF of the arm

hi: An initial configuration of the robot and environ-
ment

ho: The current configuration of the robot and envi-
ronment

Qo Set of IK joint configuration solutions to goal
x; from initial configuration h;, {¢1,¢2,...,qn}.
where n is the number of IK solutions

hy: A set of of cardinality >= 1 of initial configura-
tions of the robot base and configurable environ-
ment, {hq, ha, ..., h,, }, where n is the number of
initial configurations in set hy

T: The set of initial configuration sets,
{h1,ha,...,h,}, where n is the number of
sets of initial configurations being considered.

n: The set of valid discretized configurations
J(q) The Jacobian of the arm in joint configuration ¢
a: The order of the robot arm. In our case, 6.

A(g;): The kinematic isotropy for the arm in joint con-
figuration g;

4) Precomputed Scoring: TC-Reachability and TC-
Manipulability:
At the core of TCS, we use two scores, TC-reachability
and TC-manipulability, to determine if the robot is likely
to be able to perform an assistive task using a set of ini-
tial configurations. This scoring process is computationally
expensive and is computed offline. The saved scores can
then be referenced quickly online. We limit interaction to



the PR2’s left arm. The algorithm could be extended in a
straightforward manner to use either or both arms.

We first discretize the initial configuration space into
n. If we would like to impose constraints on the initial
configurations (e.g. require that the user be seated upright
in the configurable bed), we apply these constraints to 7).

The discretization size and resolution directly affects the
computational cost of the scoring and the memory cost of
the saved scores. Section IV describes the discretization we
used in our evaluation and how we limited the practical
computational cost.

We create 7 by selecting all sets of one or more initial
configurations from 7 and we evaluate a TC-reachability and
TC-manipulability score for each hy in 7.

Our terms TC-reachability and TC-manipulability differ
from common terms found in other works, and we define
them below. See section III-A.3 for clarification on nomen-
clature.

Our TC-reachability score Pg for a set of initial configu-
rations hj and a task c is shown in equation (1).

N.

PR(thC) = (ﬁ) hmeaf)fk W(hjai)a (1)
c g

where W (h;,4) is a binary function. W (h;,i) = 1 if the
robot finds an IK solution to the goal pose j from initial
configuration h;; otherwise W(h;,i) = 0.

Our TC-manipulability score uses kinematic isotropy from
[4], which we define now. The equation for kinematic
isotropy is shown in equation (2). A(g;) is the kinematic
isotropy for the arm in joint configuration g;.

¢/det(J(g;)J (¢:)T)
Ala) = (e T@) ) @

where J(g;) is the Jacobian of the robot arm in joint
configuration ¢; and a is the order of the robot arm (6 in
the case of our 7-DoF arm).

We use a function, F'(z;, h;) to find the maximum value
of A(g;) for goal pose x;.

Flauh) = mox (M) Va,., ¢ 0
j @y,
or 3)
F(x;) =0 Vq;m,hj =0
The calculation for our TC-manipulability score

Py (hy, c) is shown in equation (4).

NC

PM(hk,C) = (F) hmé%’i(kF((Ei,hj). (4)
¢ =1 77"

Our TC-reachability and TC-manipulability scores each
range from O to 1.

5) Online Selection:
When running our real-time service, we want a rapid re-
sponse to the user from the algorithm with a good set of
initial configurations for the task, given the current situation.

TCS loads the precomputed scores and runs a brute force
optimization on equation (5).

argmax «aPgr(hg,c)+ Py (hi,c) — vD(hy, ho), (5)

k

where a, (3, and  are gains in the optimization function,
adjustable depending on the priorities of the user. D(hy, ho)
is a cost function based on the robot’s current location hg
and the set of initial configurations hj. For example, this
can be based on Euclidean distance. Although, we did not
formally evaluate it, we have found that with D(hy, hg) as
a Euclidean distance cost on the robot’s X and Y position,
this step completes rapidly, on the order of 1 second.

B. The Process

Figure 2 shows the workflow of TCS.
1) Discretize the initial configuration space into 7.
2) Model tasks as goal end-effector poses in reference to
relevant coordinate frames.
3) For each configuration, evaluate which goal poses are
reachable and calculate the kinematic isotropy A(g;).
4) Create the sets of initial configurations hj, which make
up 7, and evaluate their respective TC-reachability
(Pr) and TC-manipulability (Pps) scores.
5) Save scores
6) ROS service call requests a set of initial configurations
for a task.
7) Consider current robot observations.
8) Using optimization function, select and return the best
set of initial configurations
TABLE I: Results of running TCS in 1000 Monte-Carlo
simulations. Mean and standard deviation (std) of percent
reached goals with error introduced into the location of the
human and the wheelchair.

l Task [ Model [ Performance: Mean (std) ]
Shaving Wheelchair 99.9% (1.6)
Feeding Wheelchair 95.5% (14.4)
Brushing Wheelchair 100.0% (0.0)
Shaving Configurable Bed 97.0% (8.9)

without Wall
Shaving Configurable Bed 99.9% (1.4)
Bathing Configurable Bed 79.5% (6.5)
Scratching Upper | Configurable Bed 66.0% (39.8)
Arm Left
Scratching Upper | Configurable Bed 100.0% (1.6)
Arm Right
Scratching Configurable Bed 100.0% (0.0)
Forearm Left
Scratching Configurable Bed 100.0% (0.0)
Forearm Right
Scratching Thigh | Configurable Bed 99.8% (2.7)
Left
Scratching Thigh | Configurable Bed 99.7% (3.9)
Right
Scratching Chest Configurable Bed 74.4% (37.4)

A. Implementation

IV. EVALUATION

We manually selected the goal poses for each task, which
we defined with respect to relevant reference frames (e.g. the



head for shaving, or the shoulder for scratching the upper
arm). A goal pose is a position and orientation goal for the
robot’s end effector. As described in section III-A.2 each
task was represented with a model consisting of a set of
goal poses. We created task models for various activities of
daily living for which a robot like the PR2 may be able
to provide assistance. The tasks we modeled were: shaving,
feeding, brushing hair, bathing (sponge bath), and scratching
the left/right upper arm, left/right forearm, left/right thigh,
and chest (each scratching task was considered separately).
For example, figure 3 shows the goal poses for the shaving
task.

We used OpenRave (http://www.openrave.org/) to simulate
environments in which to test TCS. We created an environ-
ment in OpenRave with a PR2 robot and a model of an
average male human which we placed either in a wheelchair
or in a configurable bed. The human model dimensions come
from [24]. The PR2 is a mobile manipulator made by Willow
Garage with two 7-DoF arms. We created the models for the
configurable bed and the wheelchair to match the Invacare
5401IVC full electric hospital bed and a wheelchair we
have in our lab, respectively. We used OpenRave’s inverse
kinematics database for the PR2 robot to find IK solutions
to use in our algorithm. When exploring multiple initial
configurations, we assume the robot can move from one
configuration to another.

To save on computation time, memory, and file size,
we only considered sets of configurations for which each
configuration could reach at least one goal pose, and for
which the configurations were a minimum distance apart.
We applied this minimum distance only to the X-Y po-
sition of the base. We also only saved sets of configu-
rations if their TC-manipulability score was greater than
the highest TC-manipulability of configuration sets with
lower cardinality and we limited the maximum cardi-
nality of initial configuration sets to 2. We used joblib
(https://pythonhosted.org/joblib/) to assist in saving and load-
ing files.

We used the Robot Operating System (ROS) to handle
communication between a user and the robot/algorithm. We
used the ROS service protocol to handle the user’s request.
The service receives as input a semantic description of the
task and looks for task relevant coordinate frames in ROS’s
transform (tf) tree. For the shaving task, for example, it only
looks for a head pose, but for bathing, it uses a coordinate
frame for each limb. Getting such frames for a real user in
bed may be difficult; automated body pose estimation could
be useful. When evaluating the system in simulation, the
simulator provides these coordinate frames.

1) Evaluation in Wheelchair Environment:

Figure 4 shows the simulation environment with the PR2 and
human in wheelchair.

We used TCS to determine the TC-manipulability and
TC-reachability of initial configurations for several tasks
(brushing, feeding, shaving were done using the wheelchair
model).

We allowed TCS to explore four configurable degrees of

Fig. 4: The OpenRave environment with PR2 and wheelchair.
A simulation screenshot from the shaving task, with global
axes manually added.

freedom: robot X and Y position on the ground plane, robot
base orientation on the ground plane, and Z-axis height of
the robot spine. We discretized these degrees of freedom into
5 cm, 5 cm, 45°, and 15 cm increments, respectively. The
DoF ranges were [-1.5m, 1.5m], [-1.5m, 1.5m], [0, 360°),
and [0, 30cm] respectively.

A TC-reachability score of 1 implies that the robot can
reach all goal poses from every set of initial configurations .
We evaluated each set of initial configurations by introducing
normally distributed error into the location of the human and
wheelchair and seeing what percent of the goal poses for the
task the robot could still find a valid IK solutions. We ignore
collisions between the robot base and the wheelchair for this
evaluation. We ran this as a Monte Carlo simulation 1000
times. In each simulation, we selected the best set of initial
configurations for the task, then introduced error by sampling
the normally distributed error. The error distributions are
shown in table II. Error was introduced by moving the
wheelchair in the X and Y directions and rotating it about
the Z axis. We also moved the human with respect to the
wheelchair in the X and Y directions, rotated it about the Z
axis, and tilted the head up and down.

From the 1000 simulations and the percent of goal poses
the robot could reach in each, we created statistics on the
effectiveness of the initial configuration for the task.

2) Evaluation in Configurable Bed Environment:

Figure 5 shows the simulation environment with a PR2 and
with a human on a configurable bed. We put a wall behind
the bed to emulate how beds are often positioned in rooms.
We also tested an environment without a wall behind the bed

TABLE II: Normally distributed pose estimation error im-
posed on Monte-Carlo simulation of the task.

Error
Environment Error DoF Mean (std)
Wheelchair: global X direction | 0 (1.25cm)
Wheelchair: global Y direction | 0 (1.25cm)
Wheelchair: global Z Rotation 0 (2.5deg)
Wheelchair Human: local X direction 0 (5cm)
Human: local Y direction 0 (5cm)
Human: global Z Rotation 0 (5deg)
Human: Head Tilt 0 (5deg)
Configurable Bed Human: global X d%rect%on 0 (5cm)
Human: global Y direction 0 (5cm)




with the shaving task.

Fig. 5: The OpenRave environment with PR2 and config-
urable bed: a simulation screenshot from the shaving task,
with global axes manually added.

We then used TCS to determine the TC-manipulability
and TC-reachability of possible initial configurations for the
following tasks: shaving, bathing, and scratching left upper
arm, scratching right upper arm, scratching left forearm,
scratching right forearm, scratching left thigh, scratching
right thigh, and scratching chest.

We allowed TCS to explore six configurable degrees of
freedom: robot X and Y position on the ground plane, robot
base orientation on the ground plane, Z-axis height of the
robot spine, bed Z-axis height, and tilt of the head rest.
We discretized these degrees of freedom into 10 cm, 10
cm, 90°, 15 cm, 10 cm, and 35° increments, respectively.
The DoF ranges were [-2.0m, 2.0m|, [-2.0m, 2.0m], [0,
360°), [0cm, 30cm], [Ocm, 30cm], and [0, 70°), respectively.
TCS also looked at shifts of the human in the Y direction
(discretized into 5 c¢m increments, ranging [-10cm, 10cml]),
but used the human’s Y position to essentially define separate
tasks. When selecting a best set of initial conditions, TCS
would use the task with the human’s position best repre-
sented.

As for the wheelchair environment, we ran this as a
Monte Carlo simulation 1000 times. In each simulation we
selected the best set of initial configurations for the task, then
introduced error by selecting a sample from the normally
distributed error. The error distributions are shown in table
II. Error was introduced by moving the human in the X and
Y directions with respect to the bed.

V. RESULTS AND DISCUSSION

The results of our tests showed that the initial config-
urations suggested by TCS can work well for performing
tasks despite introduced state estimation error. See Table I
for tabulated results. There are several limitations to using
this measure, which are described in section V-A.

Table III shows a 2-way comparison of the effect of the
use of TC-manipulability and multiple initial configurations
on the task performance for several tasks. For this analysis,
when not using TC-manipulability, there are many sets
of configurations with the same TC-reachability score, too
many to evaluate. We assumed a uniform distribution from
the sets of initial configurations with equal TC-reachability

from which we could sample. We performed 1000 Monte-
Carlo simulations for each test. The performance is the
distribution of percent of reachable goals. When using TC-
manipulability, we use the set of initial configurations with
the highest TC-manipulability. The results of the comparison
shows that using multiple initial configurations and us-
ing TC-manipulability as selection criteria improves perfor-
mance. Because of the limitations of our TC-manipulability
measure (described in section V-A), TCS did not necessarily
select initial configurations with the highest performance.
However, they were consistently above the average when not
using TC-manipulability and with lower standard deviation.
We performed Wilcoxon Rank Sum tests between each
method shown in the table and found p < 0.01 for all
comparisons except the bathing task, which had p = 0.055
between the with and without TC-manipulability conditions.
Without using TC-manipulability, there is a risk of making
a poor selection for the initial configuration.

Figure 6 shows the initial configurations selected by TCS
for each task, based solely on TC-manipulability and TC-
reachability. These results assume that there is no cost
associated with the robot moving to the initial configurations.

Figure 1 shows an interesting solution; when trying to
shave a user in a configurable bed, the robot can reach
shaving poses well from behind the bed with the head rest
lying flat. In [1], the researchers were able to find a good set
of two initial configurations to enable a PR2 to help a person
with severe motor impairments shave, but they had extensive
experience with robots and selecting initial configurations,
used time consuming trial and error, and lacked assurances
about the availability of alternative solutions.

The TCS solution to shaving in the configurable bed
without a backing walls illustrates a potential for TCS to
assist in the design of environments. By relaxing constraints
on the problem (e.g. removing the wall), it can find inter-
esting solutions to tasks. It may be desirable to design the
environment to allow such solutions. Without a wall behind
the bed, the PR2 is able to perform the shaving task from a
single initial configuration.

A. Limitations

There are various limitations to TCS and the evaluations
we performed.

We hand designed the task models for this paper, and have
not evaluated how well they actually represent the tasks. In
addition, all tasks in this work were defined with full 6-DoF
goal poses, although some tasks, such as sponge baths, have
position requirements and few orientation requirements. In
this work we assume tasks must be performed collision-free,
but in [2], we found that contact is both allowable and useful
for increasing the workspace in assistive tasks. We also did
not address tasks with complex motions like dressing, or
tasks with high strength requirements like lifting or ambu-
lating. A valuable step would be to evaluate the performance
of this system with a real PR2 and representative users.

The performance of TCS depends on the discretization,
which introduces error and a potential to miss solutions. In-



TABLE III: Evaluation of performance of TCS on various tasks. Shows the effect on performance of selecting initial
configurations with and without using TC-manipulability and limiting to 1 or 2 initial configurations in a solution set.
Differences are statistically significant (p < 0.01 in Wilcoxon Rank Sum tests) between each comparison shown except the
bathing task between with and without using TC-manipulability (where p=0.055). Feeding in wheelchair saw no increase in
TC-manipulability from 2 initial configuration.

TC-Manipulability
Task Number of Initial Configurations | Without: mean (std) | With: mean (std)
Shaving: wheelchair ! 66.7% (13.0) 704% (6.1)
2 94.0% (11.6) 99.9% (1.6)
Feeding: wheelchair 1 87.5% (25.3) 95.5% (14.4)
2 N/A N/A
Brushing: wheelchair ! 92:6% (10.8) 98.9% (4.5)
2 99.7% (2.4) 100.0% (0.0)
Shaving: bed 1 67.0% (8.8) 69.0% (7.3)
2 95.9% (8.5) 99.9% (1.4)
Bathing: bed 1 68.4% (9.2) 70.6% (4.9)
2 79.0% (7.9) 79.5% (6.5)

Fig. 6: Visualization of the initial configuration solution with the highest TC-manipulability score for each task. Some task
solutions are shown in two images. The images show (a) shaving (b) feeding (c) brushing (d) shaving in bed config #1
(e) shaving in bed config #2 (f) shaving in bed without wall (g) bathing config #1 (h) bathing config #2 (i) scratching left
upper arm (j) scratching right upper arm (k) scratching left forearm (1) scratching right forearm (m) scratching left thigh (n)
scratching right thigh (o) scratching chest

creases to the discretization space and resolution are limited  maximum cardinality of the set of initial configurations, the
by computation costs for scoring and the required memory  number of poses for a task and the difficulty of the task
for saving and loading scores. (no single initial configuration that can reach all poses) were

We found that with our discretization resolution and  directly related to the size of the saved files. Scratching task



save files were all less than 3 MB, but the bathing in bed
task generated 5 files averaging 77 MB. We used Python to
generate the score files and joblib to save them; alternative
methods may be able to generate scores faster and store them
in smaller files.

Although we have shown that our TC-manipulability score
can be used to select good initial configurations, it has
some limitations. Kinematic isotropy, the foundation of our
TC-manipulabilty score, does not account for joint limits
or environmental constraints. In the scratching chest and
scratching left upper arm tasks, the initial configuration of
the robot put the arm close to its joint limits. There may
be value in preferring joint configurations away from joint
limits and obstacles, potentially with a weighting function as
in [25].

VI. CONCLUSION

In this work we have presented Task-centric initial Con-
figuration Selection (TCS), a method that uses a measure
of task-centric manipulability to accommodate for pose es-
timation error, considers various environmental degrees of
freedom, and can determine a set of initial configurations
from which a robot can perform a task. The system can select
in real-time an initial configuration solution for the robot to
perform the task by precomputing TC-reachability and TC-
manipulability scores for sets of configurations. We created
11 models of ADL tasks to test our system in simulation
and showed that TCS chooses an effective set of initial
configurations for each tasks and could find a configuration
consisting of 4 DoF for a robot’s mobile base and 4 DoF for
a configurable bed.
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